Showing: 10 from total: 2481 publications
121. Improved X-ray fluorescence spectroscopic monitoring of potentially toxic elements by multivariate analysis: A case study of soils near abandoned coal mines (NW Portugal)
Milinovic, J ; Vale, C ; Futuro, A ; Pereira, C ; Flores, D ; Azenha, M
in JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, ISSN: 2213-2929,  Volume: 12, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Reusing soils near abandoned mines requires the assessment of soil quality, which includes determining potentially toxic elements (PTEs), such as As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Sr, Zn and Zr. Levels of PTEs in soil can be harmful. Hence, the measurement of their concentrations is crucial to assess whether soil properties are reusable or it represents a potential environmental risk. Field techniques such as X-ray fluorescence (XRF) imprinting may be an option for rapid PTEs monitoring. Still, due to low sensitivity and selectivity, the partially obtained results by XRF software can be biased. This study presents an alternative solution for soil PTEs monitoring based on the advantages of multivariate analysis (MVA) principally partial least square (PLS) regression applied to orthogonally signal-corrected (OSC) XRF spectroscopic data. The developed PLS models were applied to soil samples from two regions of adjacent abandoned coal mines, in NW Portugal. High correlation coefficients obtained for As, Fe, Pb, Sr and Zn validation models (R2 = 0.79-0.99) pointed to the improved accuracy of their monitoring (compared to directly obtained XRF results) in this regional soil environment. The other PTEs (Co, Cr, Cu, Ni and Zr) showed good PLS models at local environment (R2 = 0.84-0.98). The test of these models in the contaminated regions reinforces their effectiveness in monitoring contaminated soils toward the reuse of environments near abandoned mines.

122. Unravelling the combined impacts of drought and Cu in barley plants - double trouble?
Martins, M ; Oliveira, L ; Sousa, B ; Valente, IM ; Rodrigues, JA ; Azenha, M ; Soares, C ; Pereira, R ; Fidalgo, F
in PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, ISSN: 0981-9428,  Volume: 209, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract The occurrence of drought in soils, particularly in those contaminated by metals, poses a current threat to crops, as these factors can interact and induce unique stress responses. Therefore, this study mainly focused on understanding the crosstalk between drought and copper (Cu) stress in the physiology of the barley (Hordeum vulgare L.) plant. Using a bifactorial experimental design, seedlings were grown in a natural soil under the following treatments: plants continuously irrigated in uncontaminated soil for 14 days (control); plants continuously irrigated in Cu-contaminated soil (115 mg Cu kg-1) for 14 days (Cu); plants only irrigated during the initials 7 days of growth in uncontaminated soil (drought); plants co-exposed to Cu and drought (combined). After 14 days of growth, the results revealed that drought prevented Cu bioaccumulation in barley roots, which were still severely affected by the metal, both individually and in combination with the water deficit. Furthermore, individual and combined exposure to these stressors resulted in impaired photosynthetic performance in barley plants. Despite the increased activation of enzymatic and non-enzymatic antioxidant defence mechanisms, particularly in the green organs, the plants co-exposed to both stress factors still showed higher oxidative damage, severely impacting biomass production.

123. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches
Figueiredo, NM ; Voroshylova, IV ; Ferreira, ESC ; Marques, JMC ; Cordeiro, MNS
in CHEMICAL REVIEWS, 2024, ISSN: 0009-2665,  Volume: 124, 
Review,  Indexed in: crossref, scopus, wos 
Abstract Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.

124. Ab initio molecular dynamics study of hydroxyl positioning in butanediol and its impact on deep eutectic solvent structure
Fileti, EE ; Voroshylova, IV ; Ferreira, ESC ; Cordeiro, MNDS ; Malaspina, T
in JOURNAL OF MOLECULAR LIQUIDS, 2024, ISSN: 0167-7322,  Volume: 409, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Electrolytes play a crucial role in enhancing the performance of energy storage devices, including batteries and supercapacitors. However, traditional electrolytes, such as aqueous solutions, organic solvents, and ionic liquids, exhibit inherent limitations and challenges. Deep eutectic solvents have recently emerged as promising alternatives due to their environmentally friendly nature and favorable properties. Despite their widespread applications in various domains, their potential as electrolytes remains relatively underexplored. This study investigates three distinct types of deep eutectic solvents derived from different isomers of butanediols combined with choline chloride. Ab initio molecular dynamics simulations are employed to analyze the microstructure of these deep eutectic solvents, focusing on non-covalent electrostatic interactions, hydrogen bonding patterns, and vibrational spectra. The results reveal significant differences in the structural configuration of hydrogen bond acceptors and hydrogen bond donors and their interactions within the deep eutectic solvents. Specifically, the positioning of functional groups in hydrogen bond donors significantly impacts the hydrogen bonding network and the interaction with monoatomic ions. Moreover, the vibrational spectra analysis highlights the existence of hydrogen bonds involving stretching modes of the OH group, as evidenced by redshift deviations. Overall, this study provides valuable insights into the unique features of deep eutectic solvents as potential electrolytes for energy storage applications. The comprehensive analysis of their microstructure and vibrational properties enhances our understanding of deep eutectic solvent utilization and opens avenues for further research in sustainable energy storage.

125. Ionic liquid-electrode interface: Classification of ions, saturation of layers, and structure-determined potentials
Karu, K ; Nerut, ER ; Tao, XR ; Kislenko, SA ; Pohako-Esko, K ; Voroshylova, IV ; Ivanistsev, VB
in ELECTROCHIMICA ACTA, 2024, ISSN: 0013-4686,  Volume: 503, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Progress in electrochemical applications of ionic liquids builds on an understanding of electrical double layer. This computational study focuses on structure-determined quantities - maximum packing density, potentials, and capacitances - evaluated using a one-electrode electrical double layer model. Interfaces of the 40 studied ions are grouped into four distinct classes according to their characteristic packing at the model surface. The simulations suggest that the exact screening by a monolayer of counter-ions (preceding the crowding of ions) is unlikely for ions in known air- and water-stable ionic liquids within their electrochemical stability window. This work discusses how the assessed structure-determined quantities can guide the experimental tuning of (electro/mechano)chemical properties and characterize the structure of ionic liquid-electrode interfaces.

126. Probing the interface of choline chloride-based deep eutectic solvent ethaline with gold surfaces: A molecular dynamics simulation study
Ferreira, ESC ; Voroshylova, IV ; Cordeiro, MNDS
in SURFACES AND INTERFACES, 2024, ISSN: 2468-0230,  Volume: 46, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Technologies involving a solvent|surface interface, such as nanotechnology, electrochemistry, and energy storage applications, are actively pursuing ecologically responsible and sustainable development practices. In response to this pressing need, deep eutectic solvents have emerged as a promising solution to bridge the gap between technological requirements and environmental concerns. In this work, we present the results of a molecular dynamics simulation study of the interface between a monocrystalline gold surface and the deep eutectic solvent ethaline, where a molar ratio of 1:2 choline chloride:ethylene glycol was used for ethaline. The simulations covered a range of temperatures from 313 K to 343 K and applied charge values ranging from 0 to +/- 24 mu C cm-2. Several key interfacial properties were thoroughly analyzed, including among others, charge density profiles, radial distribution functions, hydrogen bond close contacts, and molecular orientation. Additionally, we examined how the differential capacitance varied upon the applied potential. Our findings reveal that, at neutral surfaces, all components of the solvent are present in the innermost layer, with ethylene glycol molecules being the most prevalent, followed by choline cations and a residual amount of chloride anions. For lower applied charges, this mixed composition at the boundary layer persists, despite the growing accumulation of ionic species with charges opposite to that of the electrode. As surface polarization increases, unique innermost boundary layers composed exclusively of one of the ionic species and the hydrogen bond donor molecules are observed, forming a multilayer structure, with subsequent layers enriched of paired counterions. Interestingly, even at higher applied charges, choline cations and ethylene glycol molecules tended to orient themselves in a parallel fashion toward the electrodes. Differential capacitance curves exhibited a camel-shaped behavior, suggesting a complex interplay of electrochemical processes at the DES|Au(100) interface. In summary, our study provides valuable insights into the interfacial properties of deep eutectic solvents on gold surfaces and their response to changes in temperature and potential, which are crucial for understanding and optimizing deep eutectic solventbased electrochemical systems.

127. Effect of DMSO on Structural Properties of DMPC and DPPC Liposome Suspensions
Amaral, LMPF ; Rangel, M ; Bastos, M
in JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, ISSN: 2079-4983,  Volume: 15, 
Article,  Indexed in: crossref, scopus, wos 
Abstract The study and characterization of the biophysical properties of membranes and drug-membrane interactions represent a critical step in drug development, as biological membranes act as a barrier that the drug must overcome to reach its active site. Liposomes are widely used in drug delivery to circumvent the poor aqueous solubility of most drugs, improving systemic bioavailability and pharmacokinetics. Further, they can be targeted to deliver to specific disease sites, thus decreasing drug load, and reducing side effects and poor adherence to treatment. To improve drug solubility during liposome preparation, DMSO is the most widely used solvent. This raises concern about the potential effect of DMSO on membranes and leads us to investigate, using DSC and EPR, the influence of DMSO on the behavior of lipid model membranes of DMPC and DPPC. In addition, we tested the influence of DMSO on drug-membrane interaction, using compounds with different hydrophobicity and varying DMSO content, using the same experimental techniques. Overall, it was found that with up to 10% DMSO, changes in the bilayer fluidity or the thermotropic properties of the studied liposomes were not significant, within the experimental uncertainty. For higher concentrations of DMSO, there is a stabilization of both the gel and the rippled gel phases, and increased bilayer fluidity of DMPC and DPPC liposomes leading to an increase in membrane permeability.

128. Carbon-Induced Changes in the Morphology and Wetting Behavior of Ionic Liquids on the Mesoscale
Carvalho, RM ; Santos, LMNBF ; Bastos, M ; Costa, JCS
in LANGMUIR, 2024, ISSN: 0743-7463,  Volume: 40, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Thin films of ionic liquids (ILs) have gained significant attention due to their unique properties and broad applications. Extensive research has focused on studying the influence of ILs' chemical composition and substrate characteristics on the structure and morphology of IL films at the nano- and mesoscopic scales. This study explores the impact of carbon-coated surfaces on the morphology and wetting behavior of a series of alkylimidazolium-based ILs. Specifically, this work investigates the effect of carbon coating on the morphology and wetting behavior of short-chain ([C(2)C(1)im][NTf2] and [C(2)C(1)im][OTf]) and long-chain ([C(8)C(1)im][NTf2] and [C(8)C(1)im][OTf]) ILs deposited on indium tin oxide (ITO), silver (Ag), and gold (Au) substrates. A reproducible vapor deposition methodology was utilized for the deposition process. High-resolution scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were used to analyze the morphological and structural characteristics of the substrates and obtained IL films. The experimental data revealed that the IL films deposited on carbon-coated Au substrates showed minor changes in their morphology compared to that of the films deposited on clean Au surfaces. However, the presence of carbon coatings on the ITO and Ag surfaces led to significant morphological alterations in the IL films. Specifically, for short-chain ILs, the carbon film surface induced 2D growth of the IL film, followed by subsequent island growth. In contrast, for long-chain ILs deposited on carbon surfaces, layer-by-layer growth occurred without island formation, resulting in highly uniform and coalesced IL films. The extent of morphological changes observed in the IL films was found to be influenced by two crucial factors: the thickness of the carbon film on the substrate surface and the amount of IL deposition.

129. A computational study of the ternary mixtures of NaPF6-EC and choline glycine ionic liquid
Fileti, EE ; Voroshylova, IV ; Cordeiro, MNDS ; Malaspina, T
in PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, ISSN: 1463-9076, 
Article in Press,  Indexed in: crossref, scopus, wos 
Abstract This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF6, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF6-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility. Our findings demonstrate that the NaPF6-EC-ChGly mixture exhibits a complex network of electrostatic interactions and hydrogen bonding, with the glycine anion significantly influencing the liquid structure. In mixtures with small additions of ChGly, we observed an optimal balance of diffusion and ionic mobility. These results highlight the potential of ChGly as a green additive to conventional electrolytes, paving the way for more sustainable and high-performance energy storage devices.

130. Foreword: The 1st CETAPS Meeting on Digital Humanities
;
in Via Panoramica: Revista de Estudos Anglo-Americanos, 2024, Volume: 13, 
Article,  Indexed in: crossref