Abstract
<jats:p>As artificial intelligence driver monitoring systems gain momentum in
intelligent mobility, it is critical to analyse how distraction is defined
and induced. This systematic review was specifically focused on studies
conducted in driving simulators. A Boolean query was iteratively developed
to retrieve articles from Scopus that fulfil the following criteria: (1)
being an empirical study, (2) addressing driver distraction, (3) using a
driving simulator, (4) aiming at developing an artificial intelligence
monitoring system. After screening, 34 articles remained and were analysed
according to four general themes: definition of distraction, characteristics
of the scenarios used in the driving simulator, sampling of participants,
and procedures. Results showed that the most common definitions of
distraction consider it as a shift in the driver’s attention towards a
secondary task, which implicates in a degradation of the execution of the
primary task (i.e., driving the vehicle), and, consequently, a reduction in
driving safety. Most articles described the scenarios used in the simulator
in greater detail and, in some cases, variations in traffic density,
visibility, and environmental conditions were observed. Furthermore,
scripted critical events in the scenario (e.g., car in front of the
participant breaking) were also used. Recruitment and samples varied greatly
between studies, with the smallest population consisting of two and the
largest of 97 participants. Despite the sample size, participants still
needed to meet eligibility criteria such as having a driver’s license,
possessing minimum driving experience, health prerequisites, being part of a
specific group, age, and gender. Procedures and tasks were not always
described in detail. However, several studies described an initial moment
where participants could familiarize themselves with the simulator without
taking measurements, while fewer reported that participants were allowed to
familiarize themselves with the tasks. Session length varied from eight to
90 minutes. Regarding the operationalization of distraction in experiments,
some studies required drivers to perform a single type of
distraction-inducing task (mental calculations, use of In-Vehicle
Information System (IVIS), cell phone operation, and manual tasks) with
varying difficulty levels. Still, most studies relied on a combination of
different tasks, such as cell phone use, physical tasks (e.g., drinking,
moving objects, and applying makeup), and IVIS use. Results showed studies
favour the description of the digital systems over the experiment design and
procedures and a preference for locating the studies at the individual level
of analysis, precluding a broader understanding of human behaviour as
socially constructed and signified. We argue that articulation with higher
levels of analysis would bring relevant explanations for actual road
behaviour and personal and social factors should be considered when
developing driver monitoring systems aimed at reducing distraction. Our
results may assist future studies within the same scope, guiding the
definition of effective experimental designs to test artificial intelligence
driving monitoring systems, while contributing to a more holistic
understanding of driver’s behaviour.</jats:p>