Degree: Doctor

Affiliation(s):

FCUP

Bio

Manuel A. Azenha is an accomplished assistant professor at the University of Porto and a researcher at the Chemistry Research Center (CIQUP). His scientific journey spans almost three decades, marked by contributions and developments in various fields. Initially, Dr. Azenha's work centered around the Chemistry/Biology interface, particularly focusing on speciation, toxicity, and bioavailability. During this phase, he made notable strides in understanding the speciation of trace metals and their impact on microorganisms. His work also shed light on the speciation and bioavailability of metals found in wines, providing valuable insights into this niche area. In the past fifteen years, however, Dr. Azenha has shifted his research focus, delving into the realm of solid-phase microextraction techniques. More recently, Dr. Azenha's attention has been captivated by the field of molecular imprinting. His work embraces various formats, including sol-gel processes, radically polymerized polymers, and bioimprinting techniques. He has ventured into nanoscale imprinting and selective photocatalysis. Furthermore, Dr. Azenha's engagement with computational simulations and chemometrics signifies his role in integrating modern computational tools and statistical techniques with chemical analysis.

Publications
Showing 5 latest publications. Total publications: 75
Show all publications
1. Assessment of mobile mercury concentration in soils of an abandoned coalfield waste pile in Douro region: the Fojo waste pile (Portugal) study case, Monteiro, M; Santos, P; Marques, JE; Flores, D; Pereira, CM; Ribeiro, JA Azenha, M in JOURNAL OF SOILS AND SEDIMENTS, 2024, ISSN: 1439-0108,  Volume: 24, 
Article,  Indexed in: crossref, scopus, unpaywall, wos  DOI: 10.1007/s11368-024-03786-x P-010-7PK
Abstract Purpose Pejao Mining Complex locates in Castelo de Paiva municipality and, until its closure in 1994, was one of the most important coal mines in the Douro Coalfield. This work aims to study the presence, quantify, and evaluate the dissemination of mercury (Hg), a potentially toxic element (PTE) of major public health concern by the World Health Organization (WHO), from a waste pile affected by coal fires.Materials and methods Samples from areas affected and unaffected by the combustion and from surrounding soil were collected from Fojo waste pile region. First, the Hg pseudo-total concentration was estimated for all collected samples by soil microwave-assisted digestion with aqua regia (USEPA 3051A). Then, a sequential extraction procedure (SEP), the USEPA 3200, was applied for Hg fractionation and speciation aiming to evaluate Hg mobility and bioavailability to surrounding ecosystems.Results and discussion The results obtained showed a Hg enrichment in soil samples when compared to Portuguese and international reference values for soils. Relatively to the Hg availability and mobility, although it predominates in the semi-mobile fraction, the waste pile materials exposed to combustion showed a concerning increase of Hg levels in the mobile fraction that contains the more labile Hg species, being a major source of environmental contamination by Hg.Conclusions This study allowed to conclude that combustion of mining residues increased Hg mobility, toxicity, and bioavailability, increasing the contamination potential of the coal waste pile. The methodology applied in this work can be replicated in other abandoned mines to monitor, control, and/or mitigate the Hg environmental impact in the surrounding soils and waters.

2. Unravelling the combined impacts of drought and Cu in barley plants - double trouble?, Martins, M; Oliveira, L; Sousa, B; Valente, IM; Rodrigues, JA; Azenha, M Soares, C; Pereira, R; Fidalgo, F in PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, ISSN: 0981-9428,  Volume: 209, 
Article,  Indexed in: crossref, scopus, unpaywall, wos  DOI: 10.1016/j.plaphy.2024.108546 P-010-4YP
Abstract The occurrence of drought in soils, particularly in those contaminated by metals, poses a current threat to crops, as these factors can interact and induce unique stress responses. Therefore, this study mainly focused on understanding the crosstalk between drought and copper (Cu) stress in the physiology of the barley (Hordeum vulgare L.) plant. Using a bifactorial experimental design, seedlings were grown in a natural soil under the following treatments: plants continuously irrigated in uncontaminated soil for 14 days (control); plants continuously irrigated in Cu-contaminated soil (115 mg Cu kg-1) for 14 days (Cu); plants only irrigated during the initials 7 days of growth in uncontaminated soil (drought); plants co-exposed to Cu and drought (combined). After 14 days of growth, the results revealed that drought prevented Cu bioaccumulation in barley roots, which were still severely affected by the metal, both individually and in combination with the water deficit. Furthermore, individual and combined exposure to these stressors resulted in impaired photosynthetic performance in barley plants. Despite the increased activation of enzymatic and non-enzymatic antioxidant defence mechanisms, particularly in the green organs, the plants co-exposed to both stress factors still showed higher oxidative damage, severely impacting biomass production.

3. Early Activation of Antioxidant Responses in Ni-Stressed Tomato Cultivars Determines Their Resilience Under Co-exposure to Drought, Spormann, S; Soares, C; Martins, V; Azenha, M Gerós, H; Fidalgo, F in JOURNAL OF PLANT GROWTH REGULATION, 2023, ISSN: 0721-7595,  Volume: 42, 
Article,  Indexed in: crossref, scopus, wos  DOI: 10.1007/s00344-022-10595-4 P-00W-3MA
Abstract Throughout their life cycle, plants are subjected to a variety of environmental constraints, including abiotic stresses. The present study aimed at characterizing the responses of the two tomato cultivars Gold Nugget (GN) and Purple Calabash (PC) exposed to a combination of nickel (Ni) and drought. The following hypotheses were pursued: (i) the activation of responses to one stressor eases further adjustments to a second stressor; and (ii) the two tomato cultivars are differentially susceptible to drought and heavy metal-stress. Besides biometrical evaluations, the distribution of Ni in tissues and the redox homeostasis in both cultivars were compared in response to Ni-stress, polyethylene glycol (PEG)-induced drought, and to their combination. Regarding single stresses, Ni caused more harmful effects to plants than PEG-induced drought, in terms of growth inhibition and production of reactive oxygen species. Ni was mostly accumulated in the roots. The GN cultivar promptly activated antioxidant defenses under Ni-stress, while, in PC, such antioxidants were more strongly induced under combined stress. Stress co-exposure led to a drastic proline accumulation, resembling a signal of stress sensitivity. Overall, the GN cultivar seemed to be less susceptible to the combined stress than PC, as it could activate stronger antioxidant defenses under single Ni toxicity, possibly easing further adjustments demanded by the later co-exposure to drought. This study showed that the two cultivars of the same species had different levels of perception and responsiveness to Ni-induced stress, which translated into different susceptibilities to the combined exposure to PEG-induced drought. [GRAPHICS] .

4. Effects of Exogenously Applied Copper in Tomato Plants' Oxidative and Nitrogen Metabolisms under Organic Farming Conditions, Alves, A; Ribeiro, R; Azenha, M Cunha, M; Teixeira, J in HORTICULTURAE, 2023, ISSN: 2311-7524,  Volume: 9, 
Article,  Indexed in: crossref, scopus, wos  DOI: 10.3390/horticulturae9030323 P-00X-ZCY
Abstract Currently, copper is approved as an active substance among plant protection products and is considered effective against more than 50 different diseases in different crops, conventional and organic. Tomato has been cultivated for centuries, but many fungal diseases still affect it, making it necessary to control them through antifungal agents, such as copper, making it the primary form of fungal control in organic farming systems (OFS). The objective of this work was to determine whether exogenous copper applications can affect AOX mechanisms and nitrogen use efficiency in tomato plant grown in OFS. For this purpose, plants were sprayed with 'Bordeaux' mixture (SP). In addition, two sets of plants were each treated with 8 mg/L copper in the root substrate (S). Subsequently, one of these groups was also sprayed with a solution of 'Bordeaux' mixture (SSP). Leaves and roots were used to determine NR, GS and GDH activities, as well as proline, H2O2 and AsA levels. The data gathered show that even small amounts of copper in the rhizosphere and copper spraying can lead to stress responses in tomato, with increases in total ascorbate of up to 70% and a decrease in GS activity down to 49%, suggesting that excess copper application could be potentially harmful in horticultural production by OFS.

5. 2,4-dichlorophenoxyacetic acid detoxification occurs primarily in tomato leaves by the glutathione S-transferase phi members 4 and 5, Pinto, A; Azenha, M Fidalgo, F; Teixeira, J in SCIENTIA HORTICULTURAE, 2023, ISSN: 0304-4238,  Volume: 321, 
Article,  Indexed in: crossref, scopus, unpaywall, wos  DOI: 10.1016/j.scienta.2023.112214 P-00Y-K0W
Abstract In the last 60 years, auxinic herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) have been among the widest and successful herbicides used in agriculture because it is a selective herbicide that kills dicots and mimics the natural plant phytohormone indol-3-acetic acid (IAA) at the molecular level. In spite of industry attempts to reformulate 2,4-D-based herbicides and reduce their off-target movement, damage has been reported on sensitive plants, like tomato, at low ratesdi. Therefore, it is important to study the responses of such species to such conditions so that yield losses can be avoided or, at least, reduced. It is known that ethylene, abscisic acid (ABA) and reactive oxygen species (ROS) play a central role in 2,4-D toxicity, leading to numerous unbeneficial changes in plant tissues. Yet, how glutathione-related defense-and/or stress-related genes' expressions are affected needs to be more studied. In this study, tomato plants (Solanum lycopersicum L.) were used to determine the expression and participation of the different GST phi class gene family members, plus the plans' antioxidant system, in response to 2,4-D. When tomato plants were root-treated with 2.26 mM 2,4-D for 48 h, H2O2 and O2 & BULL; levels increased in shoots. Contrarily, in roots, 2,4-D did not provoke clear symptoms of oxidative stress, as lipid peroxidation, H2O2 and O2 & BULL; levels decreased. Despite the difference in ROS levels observed in both organs, the exposure of tomato plants to 2,4-D lead to the activation of key antioxidant enzymes in both organs, apart from superoxide dismutase (SOD), whose activity increased only in roots, while ascorbate peroxidase (APX) and catalase (CAT) activities increased in both. Also, tomato plants responded to 2.26 mM 2,4-D by increasing Ascorbate (AsA) levels in both organs while an increase in Glutathione (GSH) was only observed in shoots. The herbicide increased both the synthesis and the regeneration of GSH, as well as its usage to conjugate 2,4-D, as shoot & gamma;-glutamyl-cysteinyl synthetase (& gamma;-ECS), glutathione reductase (GR) and glutathione S-transferase (GST) activities increased. Shoot GST increased activity was due to an increased expression of SlGSTF4 and SlGSTF5, while no SlGSTFs increased their expression in roots. Shoots and roots of tomato plants were differentially affected by 2.26 mM 2,4-D, with 2,4-D detoxification occurring predominantly in leaves, with the specific participation of the GST phi class members SlGSTF4 and SlGSTF5. Also, this study reinforces the notion that the cultivation of tomato in 2,4-D-contaminated soils may result in yield reduction.