Showing: 10 from total: 46 publications
1. Preparation, Characterization, and Environmental Safety Assessment of Dithiocarbazate Loaded Mesoporous Silica Nanoparticles
Menezes, T ; Bouguerra, S ; Andreani, T ; Pereira, R ; Pereira, C
in NANOMATERIALS, 2023, Volume: 13, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Dithiocarbazates comprise an important class of Schiff bases with remarkable biological applications due to the imine group present in their structure. However, full exploitation of the biological activity of 3-methyl-5-phenyl-pyrazoline-1-(S-benzyldithiocarbazate) (DTC) is limited due to its easy degradation and poor solubility in aqueous solutions. The loading of DTC into mesoporous silica nanoparticles (MSiNPs) can be an excellent strategy to improve the solubility of DTC in the aqueous medium. Therefore, the main goal of the present work was to design MSiNP-DTC and to evaluate the success of the loading process by measuring its physicochemical properties and evaluating the environmental safety of the new DTC formulation using different aquatic organisms, such as the microalgae Raphidocelis subcapitata, the macrophyte Lemna minor, and the marine bacterium Aliivibrio fischeri. DTC, MSiNP, and MSiNP-DTC concentrations ranging from 8.8 to 150 mg L-1 were tested for all the species, showing low toxicity against aquatic organisms. Loading DTC into MSiNPs caused a slight increase in the toxicity at the concentrations tested, only allowing for the estimation of the effect concentration causing a 20% reduction in bioluminescence or growth rate (EC20). Therefore, despite the potential of MSiNPs as a drug delivery system (DDS), it is of utmost importance to assess its impact on the safety of the new formulations.

2. Modified Drug Delivery Systems for Veterinary Use: Pharmaceutical Development and Applications
Souto, EB ; Barbosa, CI ; Baldim, I ; Campos, JR ; Fernandes, AR ; Mazzola, PG ; Andreani, T ; Dias, IR ; Durazzo, A ; Lucarini, M ; Atanasov, AG ; Silva, AM ; Santini, A
in Current Bioactive Compounds, 2023, ISSN: 1573-4072,  Volume: 19, 
Review,  Indexed in: crossref, scopus, unpaywall 
Abstract Scientific research in the field of veterinary pharmacology has provided new opportuni-ties for the development of modified release dosage forms, with the aim to improve therapeutic efficacy and reduce animal stress. The formulation of classical drug molecules with advanced bio-materials has become a new approach to increasing drug bioavailability and improving the therapeutic outcome. The main reasons for the development of modified drug delivery systems for animal use are the need to reduce the animal stress caused by the handling and administration of the drug and reduce the cost in financial and chronological terms. This review discusses the most common delivery systems used in veterinary and the difficulties encountered in innovating therapeutic options in the field. © 2023 Bentham Science Publishers.

3. Eucalyptus globulus Leaf Aqueous Extract Differentially Inhibits the Growth of Three Bacterial Tomato Pathogens
Pinto, M ; Soares, C ; Andreani, T ; Fidalgo, F ; Tavares, F
in PLANTS-BASEL, 2023, Volume: 12, 
Article,  Indexed in: crossref, scopus, wos 
Abstract As available tools for crop disease management are scarce, new, effective, and eco-friendly solutions are needed. So, this study aimed at assessing the antibacterial activity of a dried leaf Eucalyptus globulus Labill. aqueous extract (DLE) against Pseudomonas syringae pv. tomato (Pst), Xanthomonas euvesicatoria (Xeu), and Clavibacter michiganensis michiganensis (Cmm). For this, the inhibitory activity of different concentrations of DLE (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 250 g L-1) was monitored against the type strains of Pst, Xeu, and Cmm through the obtention of their growth curves. After 48 h, results showed that the pathogen growth was strongly inhibited by DLE, with Xeu the most susceptible species (15 g L-1 MIC and IC50), followed by Pst (30 g L-1 MIC and IC50), and Cmm (45 and 35 g L-1 MIC and IC50, respectively). Additionally, using the resazurin assay, it was possible to verify that DLE considerably impaired cell viability by more than 86%, 85%, and 69% after Pst, Xeu, and Cmm were incubated with DLE concentrations equal to or higher than their MIC, respectively. However, only the treatment with DLE at 120 g L-1 did not induce any hypersensitive response in all pathogens when treated bacterial suspensions were infiltrated onto tobacco leaves. Overall, DLE can represent a great strategy for the prophylactic treatment of tomato-associated bacterial diseases or reduce the application of environmentally toxic approaches.

4. Environmental Safety Assessments of Lipid Nanoparticles Loaded with Lambda-Cyhalothrin
Ganilho, C ; da Silva, MB ; Paiva, C ; de Menezes, TI ; dos Santos, MR ; Pereira, CM ; Pereira, R ; Andreani, T
in NANOMATERIALS, 2022, ISSN: 2079-4991,  Volume: 12, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Lipid nanoparticles (LN) composed of biodegradable lipids and produced by green methods are candidates for the encapsulation of pesticides, potentially contributing to decreasing their release in the environment. From a safety-by-design concept, this work proposes LN for the encapsulation of insecticide active ingredients (AI). However, given the complexity of nanoparticles, ecotoxicological studies are often controversial, and a detailed investigation of their effects on the environment is required. Accordingly, this work aimed to produce and characterize LN containing the insecticide lambda-cyhalothrin (LC) and evaluate their safety to crops (Solanum lycopersicum and Zea mays), soil invertebrates (Folsomia candida and Eisenia fetida), and soil microbial parameters. The average particle size for LN-loaded with LC (LN-LC) was 165.4 +/- 2.34 nm, with narrow size distribution and negative charge (-38.7 +/- 0.954 mV). LN were able to encapsulate LC with an entrapment efficacy of 98.44 +/- 0.04%, maintaining the stability for at least 4 months. The LN-LC showed no risk to the growth of crops and reproduction of the invertebrates. The effect on microbial parameters showed that the activity of certain soil microbial parameters can be inhibited or stimulated by the presence of LN at highest concentrations, probably by changing the pH of soil or by the intrinsic properties of LN.

5. Lipid-Drug Conjugates and Nanoparticles for the Cutaneous Delivery of Cannabidiol
Zielinska, A ; Cano, A ; Andreani, T ; Martins-Gomes, C ; Silva, AM ; Szalata, M ; Slomski, R ; Souto, EB
in INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, Volume: 23, 
Review,  Indexed in: wos 
Abstract Lipid nanoparticles are currently used to deliver drugs to specific sites in the body, known as targeted therapy. Conjugates of lipids and drugs to produce drug-enriched phospholipid micelles have been proposed to increase the lipophilic character of drugs to overcome biological barriers. However, their applicability at the topical level is still minimal. Phospholipid micelles are amphiphilic colloidal systems of nanometric dimensions, composed of a lipophilic nucleus and a hydrophilic outer surface. They are currently used successfully as pharmaceutical vehicles for poorly water-soluble drugs. These micelles have high in vitro and in vivo stability and high biocompatibility. This review discusses the use of lipid-drug conjugates as biocompatible carriers for cutaneous application. This work provides a metadata analysis of publications concerning the conjugation of cannabidiol with lipids as a suitable approach and as a new delivery system for this drug.

6. Glyphosate vs. Glyphosate-Based Herbicides Exposure: A Review on Their Toxicity
Martins-Gomes, C ; Silva, TL ; Andreani, T ; Silva, AM
in JOURNAL OF XENOBIOTICS, 2022, ISSN: 2039-4705,  Volume: 12, 
Article,  Indexed in: wos 
Abstract Glyphosate-based herbicide has been the first choice for weed management worldwide since the 1970s, mainly due to its efficacy and reported low toxicity, which contributed to its high acceptance. Many of the recent studies focus solely on the persistence of pesticides in soils, air, water or food products, or even on the degree of exposure of animals, since their potential hazards to human health have raised concerns. Given the unaware exposure of the general population to pesticides, and the absence of a significant number of studies on occupational hazards, new glyphosate-induced toxicity data obtained for both residual and acute doses should be analyzed and systematized. Additionally, recent studies also highlight the persistence and toxicity of both glyphosate metabolites and surfactants present in herbicide formulations. To renew or ban the use of glyphosate, recently published studies must be taken into account, aiming to define new levels of safety for exposure to herbicide, its metabolites, and the toxic excipients of its formulations. This review aims to provide an overview of recent publications (2010-present) on in vitro and in vivo studies aimed at verifying the animal toxicity induced by glyphosate, its metabolite aminomethylphosphonic acid (AMPA) and glyphosate-based formulations, evaluated in various experimental models. Apart from glyphosate-induced toxicity, recent data concerning the role of surfactants in the toxicity of glyphosate-based formulations are discussed.

7. Neurotoxicity Assessment of Four Different Pesticides Using In Vitro Enzymatic Inhibition Assays
Martins-Gomes, C ; Coutinho, TE ; Silva, TL ; Andreani, T ; Silva, AM
in TOXICS, 2022, ISSN: 2305-6304,  Volume: 10, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Pesticides affect different organs and tissues according to their bioavailability, chemical properties and further molecular interactions. In animal models exposed to several classes of pesticides, neurotoxic effects have been described, including the reduction of acetylcholinesterase activity in tissue homogenates. However, in homogenates, the reduction in enzymatic activity may also result from lower enzymatic expression and not only from enzymatic inhibition. Thus, in this work, we aimed to investigate the neurotoxic potential of four distinct pesticides: glyphosate (herbicide), imazalil (fungicide), imidacloprid (neonicotinoid insecticide) and lambda-cyhalothrin (pyrethroid insecticide), by assessing their inhibitory effect on the activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, by using direct in vitro enzymatic inhibition methods. All pesticides dose-dependently inhibited AChE activity, with an inhibition of 11 +/- 2% for glyphosate, 48 +/- 2% for imidacloprid, 49 +/- 3% for imazalil and 50 +/- 3% for lambda-cyhalothrin, at 1 mM. Only imazalil inhibited BChE. Imazalil induced dose-dependent inhibition of BChE with identical pattern as that observed for AChE; however, for lower concentrations (up to 500 mu M), imazalil showed higher specificity for AChE, and for higher concentrations, the same specificity was found. Imazalil, at 1 mM, inhibited the activity of BChE by 49 +/- 1%. None of the pesticides, up to 1 mM, inhibited tyrosinase activity. In conclusion, the herbicide glyphosate shows specificity for AChE but low inhibitory capacity, the insecticides imidacloprid and lambda-cyhalothrin present selective AChE inhibition, while the fungicide IMZ is a broad-spectrum cholinesterase inhibitor capable of inhibiting AChE and BChE in an equal manner. Among these pesticides, the insecticides and the fungicide are the ones with higher neurotoxic potential.

8. Molecular Physicochemical Properties of Selected Pesticides as Predictive Factors for Oxidative Stress and Apoptosis-Dependent Cell Death in Caco-2 and HepG2 Cells
Silva, AM ; Martins Gomes, C ; Ferreira, SS ; Souto, EB ; Andreani, T
in INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, ISSN: 16616596,  Volume: 23, 
Article,  Indexed in: crossref, scopus, wos 
Abstract In this work, three pesticides of different physicochemical properties: glyphosate (GLY, herbicide), imidacloprid (IMD, insecticide), and imazalil (IMZ, fungicide), were selected to assess their cytotoxicity against Caco-2 and HepG2 cells. Cell viability was assessed by the Alamar Blue assay, after 24 and 48 h exposure to different concentrations, and IC50 values were calculated. The mechanisms underlying toxicity, namely cellular reactive oxygen species (ROS), glutathione (GSH) content, lipid peroxidation, loss of mitochondrial membrane potential (MMP), and apoptosis/necrosis induction were assessed by flow cytometry. Cytotoxic profiles were further correlated with the molecular physicochemical parameters of pesticides, namely: water solubility, partition coefficient in an n-octanol/water (Log P-ow) system, topological polar surface area (TPSA), the number of hydrogen-bonds (donor/acceptor), and rotatable bonds. In vitro outputs resulted in the following toxicity level: IMZ (Caco-2: IC50 = 253.5 +/- 3.37 mu M, and HepG2: IC50 = 94 +/- 12 mu M) > IMD (Caco-2: IC50 > 1 mM and HepG2: IC50 = 624 +/- 24 mu M) > GLY (IC50 >>1 mM, both cell lines), after 24 h treatment, being toxicity time-dependent (lower IC50 values at 48 h). Toxicity is explained by oxidative stress, as IMZ induced a higher intracellular ROS increase and lipid peroxidation, followed by IMD, while GLY did not change these markers. However, the three pesticides induced loss of MMP in HepG2 cells while in Caco-2 cells only IMZ produced significant MMP loss. Increased ROS and loss of MMP promoted apoptosis in Caco-2 cells subjected to IMZ, and in HepG2 cells exposed to IMD and IMZ, as assessed by Annexin-V/PI. The toxicity profile of pesticides is directly correlated with their Log P-ow, as affinity for the lipophilic environment favours interaction with cell membranes governs, and is inversely correlated with their TPSA; however, membrane permeation is favoured by lower TPSA. IMZ presents the best molecular properties for membrane interaction and cell permeation, i.e., higher Log P-ow, lower TPSA and lower hydrogen-bond (H-bond) donor/acceptor correlating with its higher toxicity. In conclusion, molecular physicochemical factors such as Log P-ow, TPSA, and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus they are key factors to potentially predict the toxicity of other compounds.

9. In Vitro Assessment of Pesticides Toxicity and Data Correlation with Pesticides Physicochemical Properties for Prediction of Toxicity in Gastrointestinal and Skin Contact Exposure
Silva, AM ; Martins-Gomes, C ; Silva, TL ; Coutinho, TE ; Souto, EB ; Andreani, T
in TOXICS, 2022, ISSN: 2305-6304,  Volume: 10, 
Article,  Indexed in: crossref, scopus, wos 
Abstract In this work, three pesticides of different physicochemical properties, namely, glyphosate (herbicide), imidacloprid (insecticide) and imazalil (fungicide), were selected to assess their cytotoxicity against distinct cell models (Caco-2, HepG2, A431, HaCaT, SK-MEL-5 and RAW 264.7 cells) to mimic gastrointestinal and skin exposure with potential systemic effect. Cells were subjected to different concentrations of selected pesticides for 24 h or 48 h. Cell viability was assessed by Alamar Blue assay, morphological changes by bright-field microscopy and the IC50 values were calculated. Cytotoxic profiles were analysed using the physico-chemical parameters of the pesticides, namely: molecular weight, water solubility, the partition coefficient in the n-octanol/water (Log P-ow) system, the topological polar surface area (TPSA), and number of hydrogen-bonds (donor/acceptor) and rotatable bonds. Results showed that glyphosate did not reduce cell viability (up to 1 mM), imidacloprid induced moderate toxicity (IC50 > 1 mM for Caco-2 cells while IC50 = 305.9 +/- 22.4 mu M for RAW 264.7 cells) and imazalil was highly cytotoxic (IC50 > 253.5 +/- 3.37 for Caco-2 cells while IC50 = 31.3 +/- 2.7 mu M for RAW 264.7 cells) after 24 h exposure. Toxicity was time-dependent as IC50 values at 48 h exposure were lower, and decrease in cell viability was accompanied by changes in cell morphology. Pesticides toxicity was found to be directly proportional with their Log P-ow, indicating that the affinity to a lipophilic environment such as the cell membranes governs their toxicity. Toxicity is inverse to pesticides TPSA, but lower TPSA favours membrane permeation. The lower toxicity against Caco-2 cells was attributed to the physiology and metabolism of cell barriers equipped with various ABC transporters. In conclusion, physicochemical factors such as Log P-ow, TPSA and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus being key factors to potentially predict the toxicity of other compounds.

10. Ecotoxicity to Freshwater Organisms and Cytotoxicity of Nanomaterials: Are We Generating Sufficient Data for Their Risk Assessment?
Andreani, T ; Nogueira, V ; Gavina, A ; Fernandes, S ; Rodrigues, JL ; Pinto, VV ; Ferreira, MJ ; Silva, AM ; Pereira, CM ; Pereira, R
in NANOMATERIALS, 2021, ISSN: 2079-4991,  Volume: 11, 
Article,  Indexed in: crossref, scopus, wos 
Abstract The aim of the present study was to investigate the eco-cytotoxicity of several forms of nanomaterials (NM), such as nano-CuO, nano-TiO2, nano-SiO2 and nano-ZnO, on different aquatic species (Raphidocelis subcapitata, Daphnia magna and Lemna minor) following standard protocols and on human cell lines (Caco-2, SV-80, HepG2 and HaCaT). Predicted no-effect concentrations (PNEC) or hazard concentrations for 5% of the species (HC5) were also estimated based on the compilation of data available in the literature. Most of the NM agglomerated strongly in the selected culture media. For the ecotoxicity assays, nano-CuO and nano-ZnO even in particle agglomeration state were the most toxic NM to the freshwater organisms compared to nano-TiO2 and nano-SiO2. Nano-ZnO was the most toxic NM to R. subcapitata and D. magna, while nano-CuO was found to be very toxic to L. minor. Nano-CuO was very toxic to Caco-2 and HepG2 cells, particularly at the highest tested concentrations, while the other NM showed no toxicity to the different cell lines. The HC5 and PNEC values are still highly protective, due to data limitations. However, the present study provides consistent evidence of the potential risks of both nano-CuO and nano-ZnO against aquatic organisms and also their effects on public health.