Showing: 10 from total: 2087 publications
41. Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review
Silva, AT ; Figueiredo, R ; Azenha, M ; Jorge, PAS ; Pereira, CM ; Ribeiro, JA
in ACS SENSORS, 2023, ISSN: 2379-3694, 
Review,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Over the past decade, molecular imprinting (MI) technologyhasmade tremendous progress, and the advancements in nanotechnology havebeen the major driving force behind the improvement of MI technology.The preparation of nanoscale imprinted materials, i.e., molecularlyimprinted polymer nanoparticles (MIP NPs, also commonly called nanoMIPs),opened new horizons in terms of practical applications, includingin the field of sensors. Currently, hydrogels are very promising forapplications in bioanalytical assays and sensors due to their highbiocompatibility and possibility to tune chemical composition, size(microgels, nanogels, etc.), and format (nanostructures, MIP film,fibers, etc.) to prepare optimized analyte-responsive imprinted materials.This review aims to highlight the recent progress on the use of hydrogelMIP NPs for biosensing purposes over the past decade, mainly focusingon their incorporation on sensing devices for detection of a fundamentalclass of biomolecules, the peptides and proteins. The review beginsby directing its focus on the ability of MIPs to replace biologicalantibodies in (bio)analytical assays and highlight their great potentialto face the current demands of chemical sensing in several fields,such as disease diagnosis, food safety, environmental monitoring,among others. After that, we address the general advantages of nanosizedMIPs over macro/micro-MIP materials, such as higher affinity towardtarget analytes and improved binding kinetics. Then, we provide ageneral overview on hydrogel properties and their great advantagesfor applications in the field of Sensors, followed by a brief descriptionon current popular routes for synthesis of imprinted hydrogel nanospherestargeting large biomolecules, namely precipitation polymerizationand solid-phase synthesis, along with fruitful combination with epitopeimprinting as reliable approaches for developing optimized protein-imprintedmaterials. In the second part of the review, we have provided thestate of the art on the application of MIP nanogels for screeningmacromolecules with sensors having different transduction modes (optical,electrochemical, thermal, etc.) and design formats for single use,reusable, continuous monitoring, and even multiple analyte detectionin specialized laboratories or in situ using mobiletechnology. Finally, we explore aspects about the development of thistechnology and its applications and discuss areas of future growth.

42. Porous Carbon Materials Based on Blue Shark Waste for Application in High-Performance Energy Storage Devices
Brandao, ATSC ; State, S ; Costa, R ; Enache, LB ; Potorac, P ; Vazquez, JA ; Valcarcel, J ; Silva, AF ; Enachescu, M ; Pereira, CM
in APPLIED SCIENCES-BASEL, 2023, ISSN: 2076-3417,  Volume: 13, 
Article,  Indexed in: scopus, wos 
Abstract The scientific community's interest in developing sustainable carbon materials from biomass waste is increasing steadily, responding to the need to reduce dependence on fossil fuels. Every day, different biomass sources are suggested for obtaining porous carbon materials with characteristics for application in different areas. Porous carbon materials with a high specific surface area are a subject of interest for application in energy storage devices. This work reports the use of blue shark chondroitin sulfate and gelatine as precursors for developing porous carbon materials for energy storage devices. Commercial chondroitin sulfate was used for comparison. The porous carbons obtained in this study underwent various characterization techniques to assess their properties. A BET surface area analyzer measured the specific surface area and pore size. Additionally, scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), a high resolution-scanning transmission electron microscope (HR-STEM), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, composition, and structure of the carbons. A modified glassy carbon (GC) electrode was used as the working electrode for the electrochemical characterization. Cyclic voltammetry and galvanostatic charge/discharge techniques were employed with ethaline, an environmentally friendly and sustainable electrolyte based on choline chloride, to assess the electrochemical performance. Furthermore, the most promising samples were subjected to ball-milling to investigate the impact of this process on surface area and capacitance. Blue shark chondroitin sulfate-based carbon presented a specific surface area of 135.2 m(2) g(-1), compared to 76.11 m(2) g(-1) of commercial chondroitin sulfate, both carbonized for 1 h at 1000 & DEG;C. Blue shark gelatine presented a specific surface area of 30.32 m(2) g(-1). The associated specific capacitance of these three samples is 40 F g(-1), 25 F g(-1), and 7 F g(-1). Ball-milling on these samples increased the specific surface area and capacitance of the three studied samples with different optimal milling times. This study presents the novel utilization of carbon materials derived from blue shark (with and without ball-milling) through a one-step carbonization process. These carbon materials were combined with an environmentally friendly DES electrolyte. The aim was to explore their potential application in energy storage devices, representing the first instance of employing blue shark-based carbon materials in this manner.

43. Porous Carbon Materials Based on Blue Shark Waste for Application in High-Performance Energy Storage Devices
Brandão, ATSC ; State, S ; Costa, R ; Enache, L ; Potorac, P ; Vázquez, JA ; Valcarcel, J ; Silva, AF ; Enachescu, M ; Pereira, CM
in Applied Sciences, 2023, ISSN: 2076-3417,  Volume: 13, 
Article,  Indexed in: crossref, unpaywall 
Abstract <jats:p>The scientific community’s interest in developing sustainable carbon materials from biomass waste is increasing steadily, responding to the need to reduce dependence on fossil fuels. Every day, different biomass sources are suggested for obtaining porous carbon materials with characteristics for application in different areas. Porous carbon materials with a high specific surface area are a subject of interest for application in energy storage devices. This work reports the use of blue shark chondroitin sulfate and gelatine as precursors for developing porous carbon materials for energy storage devices. Commercial chondroitin sulfate was used for comparison. The porous carbons obtained in this study underwent various characterization techniques to assess their properties. A BET surface area analyzer measured the specific surface area and pore size. Additionally, scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), a high resolution-scanning transmission electron microscope (HR-STEM), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, composition, and structure of the carbons. A modified glassy carbon (GC) electrode was used as the working electrode for the electrochemical characterization. Cyclic voltammetry and galvanostatic charge/discharge techniques were employed with ethaline, an environmentally friendly and sustainable electrolyte based on choline chloride, to assess the electrochemical performance. Furthermore, the most promising samples were subjected to ball-milling to investigate the impact of this process on surface area and capacitance. Blue shark chondroitin sulfate-based carbon presented a specific surface area of 135.2 m2 g−1, compared to 76.11 m2 g−1 of commercial chondroitin sulfate, both carbonized for 1 h at 1000 °C. Blue shark gelatine presented a specific surface area of 30.32 m2 g−1. The associated specific capacitance of these three samples is 40 F g−1, 25 F g−1, and 7 F g−1. Ball-milling on these samples increased the specific surface area and capacitance of the three studied samples with different optimal milling times. This study presents the novel utilization of carbon materials derived from blue shark (with and without ball-milling) through a one-step carbonization process. These carbon materials were combined with an environmentally friendly DES electrolyte. The aim was to explore their potential application in energy storage devices, representing the first instance of employing blue shark-based carbon materials in this manner.</jats:p>

44. Ag-doped hollow TiO2 microspheres for the selective photo-degradation of bilirubin
Ferreira, VRA ; Pereira, CM ; Silva, AF ; Azenha, MA
in APPLIED SURFACE SCIENCE, 2023, ISSN: 0169-4332,  Volume: 641, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract The surface of highly crystalline hollow TiO2 microspheres was nanostructured to contain recognition sites for bilirubin and simultaneously doped with Ag to achieve a photocatalytic response to visible light irradiation. The molecular imprinting technique was employed to obtain the recognition sites, whereas Ag-doping was tested either during the synthesis or after the complete synthesis by impregnation. Different Ag:Ti molar proportions were studied (1:2; 1:4 and 1:6). From the absorbance spectra in suspensions of the different microspheres, the ratio of 1:6 molAg/molTi was established as allowing for a greater capacity of absorption of visible light. It was possible to confirm a positive catalytic effect of Ag-doping, either with ultraviolet or visible light, especially for molecularly imprinted hollow microspheres doped during the synthesis. The increases in kinetic constants were much higher for molecularly imprinted hollow microspheres doped during the synthesis and calcined at 250 degrees C (12 min- 1 and 9 min- 1, for ultraviolet and visible light) compared to the corresponding undoped microspheres (8 min- 1 and 5 min- 1, for ultraviolet and visible light), leading to imprinting factors of 1.6 and 1.9, for ultraviolet and visible light, respectively. Selective photocatalysis was also confirmed with alpha values of 1.4 and 1.3 for ultraviolet and visible light, respectively. In conclusion, it was possible to obtain, with success, selective Agdoped hollow TiO2 microspheres with a higher rate of bilirubin degradation compared to undoped hollow TiO2 microspheres, even with visible light irradiation.

45. Chitins from Seafood Waste as Sustainable Porous Carbon Precursors for the Development of Eco-Friendly Supercapacitors
Brandao, ATSC ; Costa, R ; State, S ; Potorac, P ; Dias, C ; Vazquez, JA ; Valcarcel, J ; Silva, AF ; Enachescu, M ; Pereira, CM
in MATERIALS, 2023, ISSN: 1996-1944,  Volume: 16, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Carbon materials derived from marine waste have been drawing attention for supercapacitor applications. In this work, chitins from squid and prawn marine wastes were used as carbon precursors for further application as electrodes for energy storage devices. Chitins were obtained through a deproteinization method based on enzymatic hydrolysis as an alternative to chemical hydrolysis as commonly presented in the literature. The obtained porous carbons were characterized using a BET surface area analyzer to determine the specific surface area and pore size, as well as scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), to characterize their morphology, composition, and structure. The electrochemical characterization was performed using a glassy carbon (GC) electrode modified with marine waste-based porous carbons as the working electrode through cyclic voltammetry and galvanostatic charge/discharge using ethaline, a choline chloride-based deep eutectic solvent (DES), as an eco-friendly and sustainable electrolyte. Squid and prawn chitin-based carbons presented a surface area of 149.3 m(2) g(-1) and 85.0 m(2) g(-1), pore volume of 0.053 cm(3) g(-1) and 0.029 cm(3) g(-1), and an associated specific capacitance of 20 and 15 F g(-1) at 1 A g(-1), respectively. Preliminary studies were performed to understand the effect of -OH groups on the chitin-based carbon surface with DES as an electrolyte, as well as the effect of aqueous electrolytes (1 mol L-1 sulphuric acid (H2SO4) and 1 mol L-1 potassium hydroxide (KOH)) on the capacitance and retention of the half-cell set up. It is provided, for the first time, the use of chitin-based carbon materials obtained through a one-step carbonization process combined with an eco-friendly DES electrolyte for potential application in energy storage devices.

46. Renewable Carbon Materials as Electrodes for High-Performance Supercapacitors: From Marine Biowaste to High Specific Surface Area Porous Biocarbons
Brandao, ATSC ; State, S ; Costa, R ; Potorac, P ; Vazquez, JA ; Valcarcel, J ; Silva, AF ; Anicai, L ; Enachescu, M ; Pereira, CM
in ACS OMEGA, 2023, ISSN: 2470-1343,  Volume: 8, 
Article,  Indexed in: unpaywall, wos 
Abstract Waste, in particular, biowaste, can be a valuable sourceof novelcarbon materials. Renewable carbon materials, such as biomass-derivedcarbons, have gained significant attention recently as potential electrodematerials for various electrochemical devices, including batteriesand supercapacitors. The importance of renewable carbon materialsas electrodes can be attributed to their sustainability, low cost,high purity, high surface area, and tailored properties. Fish wasterecovered from the fish processing industry can be used for energyapplications and prioritizing the circular economy principles. Herein,a method is proposed to prepare a high surface area biocarbon fromglycogen extracted from mussel cooking wastewater. The biocarbon materialswere characterized using a Brunauer-Emmett-Teller surfacearea analyzer to determine the specific surface area and pore sizeand by scanning electron microscopy coupled with energy-dispersiveX-ray analysis, Raman analysis, attenuated total reflectance Fouriertransform infrared spectroscopy, X-ray diffraction, X-ray photoelectronspectroscopy, and transmission electron microscopy. The electrochemicalcharacterization was performed using a three-electrode system, utilizinga choline chloride-based deep eutectic solvent (DES) as an eco-friendlyand sustainable electrolyte. Optimal time and temperature allowedthe preparation of glycogen-based carbon materials, with a specificsurface area of 1526 m(2) g(-1), a pore volumeof 0.38 cm(3) g(-1), and an associated specificcapacitance of 657 F g(-1) at a current density of1 A g(-1), at 30 degrees C. The optimal material wasscaled up to a two-electrode supercapacitor using a DES-based solid-stateelectrolyte (SSE@DES). This prototype delivered a maximum capacitanceof 703 F g(-1) at a 1 A g(-1) of currentdensity, showing 75% capacitance retention over 1000 cycles, deliveringthe highest energy density of 0.335 W h kg(-1) andpower density of 1341 W kg(-1). Marine waste can bea sustainable source for producing nanoporous carbon materials tobe incorporated as electrode materials in energy storage devices.

47. Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions
Hussein, MAM ; Olmos, JM ; Piernski, MK ; Grinholc, M ; Buhl, EM ; Gunduz, O ; Youssef, AM ; Pereira, CM ; El-Sherbiny, IM ; Megahed, M
in INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, ISSN: 0141-8130,  Volume: 233, 
Article,  Indexed in: crossref, scopus, wos 
Abstract The present study proposes two unique systems using free radical-induced grafting reactions to combine Ag, chitosan (CS) and gallic acid (GA) into a single particulate nanostructure. GA-grafted-CS (GA-g-CS) was used to reduce Ag+ to Ag0, and producing Ag-GA-g-CSNPs (hybrid NPs I). Also, GA was grafted into CS-AgNPs, to form GA-g-CS AgNPs (hybrid NPs II). Although there were previous attempts to graft GA into CS, this is first time to graft GA into CS-AgNPs. The study aimed to enhance biocompatibility, antibacterial and antioxidant properties of CS-AgNPs via grafted GA. Grafting GA into CS-AgNPs was confirmed by UV-Vis, DLS, DSC/TGA, XRD, EDX and FTIR. The morphology and size of NPs were studied by TEM and SEM. The decrease of zeta-potential from +50 mV in CS-Ag NPs to +33 and + 29 mV, in the presented 2 nanoforms hybrid NPs I and II, respectively, is an indication for the successful GA graft. Among all samples, hybrid NPs II showed lower toxicity, higher antiox-idant and antibacterial activity. The obtained results revealed that grafting GA to CS-AgNPs, as a new method to combine Ag, CS and GA in a uniparticulate structure, is a unique process which may deserve a more future consideration.

48. Microparticles as BDMDAC (Quaternary Ammonium Compound) Carriers for Water Disinfection: A Layer-by-Layer Approach without Biocide Release
Redondo, M ; Pereira, A ; Pereira, CM ; Melo, LF
in NANOMATERIALS, 2023, ISSN: 2079-4991,  Volume: 13, 
Article,  Indexed in: crossref, scopus, wos 
Abstract This work studies the antimicrobial activity of benzyldimethyldodecyl ammonium chloride (BDMDAC)-coated microparticles with distinct morphological structures. Functionalized microparticles were prepared by the layer-by-layer (LbL) self-assembly technique on hydroxyapatite (Hap), calcium carbonate (CaCO3) and glass beads (GB) cores. All particles were characterized, before and after functionalization, by Fourier-Transform Infrared Spectroscopy (FTIR), Brunner-Emmett-Teller (BET) and Scanning Electron Microscopy (SEM) analyses. Antimicrobial activity was tested against planktonic Pseudomonas fluorescens. Planktonic bacteria were exposed to 100 mg/L, 200 mg/L and 400 mg/L of BDMDAC-coated microparticles for 240 min. This strategy promoted a complete bacteria reduction at 200 mg/L for Hap microparticles after 240 min. No release of biocide was detected through HPLC analyses during 2 weeks, suggesting that bacteria inactivation may be attributed to a contact killing mechanism.

49. Electrostatic Assembly of Anti-Listeria Bacteriophages on a Self-Assembled Monolayer of Aminoundecanethiol: Film Morphology, Charge Transfer Studies, and Infectivity Assays
Fernandes, PMV ; Maciel, C ; Teixeira, P ; Pereira, CM ; Campina, JM
in SURFACES, 2023, ISSN: 2571-9637,  Volume: 6, 
Article,  Indexed in: authenticus, crossref, scopus, unpaywall, wos 
Abstract The integration of bacteriophages, a particular class of viruses that specifically infect bacteria and archaea, in biosensors for the monitoring of pathogens in foods and beverages is highly desirable. To this end, an increasing focus has been set on the exploration of covalent and physical methods for the immobilization of phages on solid surfaces. This work investigates the electrostatic assembly of tailed phages, specifically anti-Listeria monocytogenes P100 phages, on an ultrathin self-assembled monolayer (SAM) of 11-amino-1-undecanethiol (AUT). The cationic properties of AUT may allow for the electrostatic capture of P100 in a capsid-down fashion, thereby exposing the specific receptor-binding proteins on their tails to the corresponding pathogens in the analytical samples. The morphology and charge transfer behavior of the assembled films were studied with atomic force microscopy, scanning electron microscopy and electrochemical techniques. These methods provided valuable insights into the orientation of the phages and the relevant role of the pH. Biological plaque assays revealed that the immobilized phages remain active towards the target bacterium. Overall, this research portrays SAMs of amino-akylthiols as a valid platform for the oriented immobilization of bacteriophages on surfaces for electroanalytical purposes.

50. Students' attitudes towards the environment and marine litter in the context of a coastal water quality educational citizen science project
Araújo, JL ; Morais, C ; Paiva, JC
in AUSTRALIAN JOURNAL OF ENVIRONMENTAL EDUCATION, 2023, ISSN: 0814-0626,  Volume: 39, 
Article in Press,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract This research focus on the evaluation of the impact on students' attitudes towards the environment, fostered by their involvement in an educational citizen science project related to the monitoring of physicochemical properties and the detection of (micro)plastics in Portuguese coastal waters. We developed an attitude scale, comprising four dimensions (Collective, Personal, Recycling and Reuse and Microplastics), which was applied, as a pre-test and post-test, to 574 middle school students (aged 12-14): 442 in the experimental group and 132 in the control group. Initially, based on pre-test results, both groups revealed positive attitudes. In the experimental group, the post-test results revealed that significantly positive attitude changes were promoted in all dimensions, whereas, in the control group, this occurred only in the Personal dimension. The control group also exhibited significantly negative attitude changes in the collective dimension. Students' engagement in sustainability-related citizen science projects can enhance environmentally literate society.