Showing: 10 from total: 83 publications
1.
Development of a plasmonic sensor based on imprinted nanogels for quantification of bovine serum albumin in bovine milk
Monteiro, M
; Figueiredo, R
; Silva, T
; Pereira, M
; Azenha, M
; Ribeiro, A
in Microchemical Journal, 2025, ISSN: 0026-265X, Volume: 209,
Article, Indexed in: crossref, scopus
Abstract
The development of simple, selective, and cost-effective methods for quantification of bovine serum albumin (BSA) is currently very important for assessing milk quality (and safety). In this work, a new surface plasmon resonance (SPR) sensor was developed, consisting of imprinted hydrogel-based nanoparticles (nanoMIPs) immobilized on gold platforms, to quantify BSA in bovine milk. The nanoMIPs prepared for recognition of BSA were synthesized by the precipitation polymerization approach, using a synthetic BSA epitope (VVSTQTALA) as template. The spherical MIP nanoparticles (NPs) had an average size of 60 nm. The binding studies performed revealed that the binding affinity of the prepared nanoMIPs to BSA (KD = 7.1 × 10−6 mol L−1) was comparable to that obtained by a natural BSA antibody (KD = 2.5 × 10−6 mol L−1). The plasmonic sensor incorporating the MIP nanomaterials achieved a limit of detection (LOD) of 1.02 × 10−6 mol L−1 (0.068 mg mL−1) and a limit of quantification (LOQ) of 3.39 × 10−6 mol L−1 (0.225 mg mL−1), over a linear range from 2.0 × 10−6 mol L−1 to 1.5 × 10−5 mol L−1. Moreover, the selectivity studies revealed a significant sensor response towards casein and a negligible response towards vancomycin. In the end, the optical sensor was tested against commercial milk samples, showing promising viability for detection of BSA as the value reported by the plasmonic sensor ((1.0 ± 0.1) × 10−4 mol L−1) was very close to that obtained by size exclusion-high-performance liquid chromatography (SEC-HPLC). © 2025 The Author(s)
2.
Recent Advances in Light-Driven Semiconductor-Based Micro/Nanomotors: Optimization Strategies and Emerging Applications
Ferreira, VRA
; Azenha, MA
in MOLECULES, 2024, ISSN: 1420-3049, Volume: 29,
Review, Indexed in: crossref, scopus, wos
Abstract
Micro/nanomotors represent a burgeoning field of research featuring small devices capable of autonomous movement in liquid environments through catalytic reactions and/or external stimuli. This review delves into recent advancements in light-driven semiconductor-based micro/nanomotors (LDSM), focusing on optimized syntheses, enhanced motion mechanisms, and emerging applications in the environmental and biomedical domains. The survey commences with a theoretical introduction to micromotors and their propulsion mechanisms, followed by an exploration of commonly studied LDSM, emphasizing their advantages. Critical properties affecting propulsion, such as surface features, morphology, and size, are presented alongside discussions on external conditions related to light sources and intensity, which are crucial for optimizing the propulsion speed. Each property is accompanied by a theoretical background and conclusions drawn up to 2018. The review further investigates recent adaptations of LDSM, uncovering underlying mechanisms and associated benefits. A brief discussion is included on potential synergistic effects between different external conditions, aiming to enhance efficiency-a relatively underexplored topic. In conclusion, the review outlines emerging applications in biomedicine and environmental monitoring/remediation resulting from recent LDSM research, highlighting the growing significance of this field. The comprehensive exploration of LDSM advancements provides valuable insights for researchers and practitioners seeking to leverage these innovative micro/nanomotors in diverse applications.
3.
Assessment of mobile mercury concentration in soils of an abandoned coalfield waste pile in Douro region: the Fojo waste pile (Portugal) study case
Monteiro, M
; Santos, P
; Marques, JE
; Flores, D
; Pereira, CM
; Ribeiro, JA
; Azenha, M
in JOURNAL OF SOILS AND SEDIMENTS, 2024, ISSN: 1439-0108, Volume: 24,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
Purpose Pejao Mining Complex locates in Castelo de Paiva municipality and, until its closure in 1994, was one of the most important coal mines in the Douro Coalfield. This work aims to study the presence, quantify, and evaluate the dissemination of mercury (Hg), a potentially toxic element (PTE) of major public health concern by the World Health Organization (WHO), from a waste pile affected by coal fires.Materials and methods Samples from areas affected and unaffected by the combustion and from surrounding soil were collected from Fojo waste pile region. First, the Hg pseudo-total concentration was estimated for all collected samples by soil microwave-assisted digestion with aqua regia (USEPA 3051A). Then, a sequential extraction procedure (SEP), the USEPA 3200, was applied for Hg fractionation and speciation aiming to evaluate Hg mobility and bioavailability to surrounding ecosystems.Results and discussion The results obtained showed a Hg enrichment in soil samples when compared to Portuguese and international reference values for soils. Relatively to the Hg availability and mobility, although it predominates in the semi-mobile fraction, the waste pile materials exposed to combustion showed a concerning increase of Hg levels in the mobile fraction that contains the more labile Hg species, being a major source of environmental contamination by Hg.Conclusions This study allowed to conclude that combustion of mining residues increased Hg mobility, toxicity, and bioavailability, increasing the contamination potential of the coal waste pile. The methodology applied in this work can be replicated in other abandoned mines to monitor, control, and/or mitigate the Hg environmental impact in the surrounding soils and waters.
4.
Unravelling the combined impacts of drought and Cu in barley plants - double trouble?
Martins, M
; Oliveira, L
; Sousa, B
; Valente, IM
; Rodrigues, JA
; Azenha, M
; Soares, C
; Pereira, R
; Fidalgo, F
in PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, ISSN: 0981-9428, Volume: 209,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
The occurrence of drought in soils, particularly in those contaminated by metals, poses a current threat to crops, as these factors can interact and induce unique stress responses. Therefore, this study mainly focused on understanding the crosstalk between drought and copper (Cu) stress in the physiology of the barley (Hordeum vulgare L.) plant. Using a bifactorial experimental design, seedlings were grown in a natural soil under the following treatments: plants continuously irrigated in uncontaminated soil for 14 days (control); plants continuously irrigated in Cu-contaminated soil (115 mg Cu kg-1) for 14 days (Cu); plants only irrigated during the initials 7 days of growth in uncontaminated soil (drought); plants co-exposed to Cu and drought (combined). After 14 days of growth, the results revealed that drought prevented Cu bioaccumulation in barley roots, which were still severely affected by the metal, both individually and in combination with the water deficit. Furthermore, individual and combined exposure to these stressors resulted in impaired photosynthetic performance in barley plants. Despite the increased activation of enzymatic and non-enzymatic antioxidant defence mechanisms, particularly in the green organs, the plants co-exposed to both stress factors still showed higher oxidative damage, severely impacting biomass production.
5.
Discarded substrates from soilless hydroponic horticulture as potential amendments for metal-contaminated soils
Gonçalves, J
; Araújo, A
; Pedron, T
; Santos, R
; Bouguerra, S
; Ribeiro, A
; Pereira, R
; Pereira, M
; Azenha, M
in Chemosphere, 2024, ISSN: 0045-6535, Volume: 364,
Article, Indexed in: crossref, scopus
Abstract
Soil contamination with metals is a major threat for the environment and public health since most metals are toxic to humans and to non-human biota, even at low concentrations. Thus, new sustainable remediation approaches are currently needed to immobilize metals in soils to decrease their mobility and bioavailability. In this work, we explore the application of discarded substrates from hydroponic cultivation, namely coconut shell and a mixture of coconut shell and pine bark, for immobilization of metals (Cd, Cr, Ni, Cu, Pb, Hg, Sb and As) in a naturally contaminated soil from a mining region in Portugal. The immobilization capacity of substrates (added to the soil at 5% mass ratio) was assessed both individually and also combined with other traditional agriculture soil additives (limestone and gypsum, at 2% mass ratio) and nanoparticles of zero-valent iron (nZVI) at 1–3% mass ratio. The overall results obtained after a 30-d incubation showed that the discarded substrates are a viable, economic, and environmental-friendly solution for metal remediation in soils, with the capacity of immobilization ranging from 20 to 91% for the metals and metalloids studied. Furthermore, they showed the capacity to reduce the soil toxicity (EC50 ∼ 6000 mg/L) to non-toxic levels (EC50 > 10000 mg/L) to the bacteria Aliivrio fischeri. © 2024 The Authors
6.
A look into osmotic, ionic, and redox adjustments in wild tomato species under combined salt and water stress
Spormann, S
; Soares, C
; Azenha, M
; Martins, V
; Fidalgo, F
in PLANT STRESS, 2024, ISSN: 2667-064X, Volume: 13,
Article, Indexed in: crossref, scopus, wos
Abstract
Conventional tomato production is widely threatened by environmental changes that impose increasingly frequent and severe conditions of soil salinization and water shortage. The assessment of the wild germplasm has become an appealing strategy for the stress-resilience improvement of crops. Tomato interspecific diversity encompasses wild species that are native to the dry shores and high-elevated deserts of the Andean countries, often thriving under circumstances of drought and salinity. The present work aimed to compare the effects of moderate salinity stress under different watering regimes on the ion distribution, redox homeostasis, osmoregulation, and antioxidant defenses between a domestic cultivar of tomato (Chico III) and the wild tomato species Solanum galapagense (LA1403), Solanum habrochaites (LA1223), and Solanum neorickii (LA2194). Results showed that although wild tomato plants grew slower than the cultivar, their growth was less affected by exposure to salt or to lower water availability. S. galapagense revealed a Na+ includer behavior under salt stress, increasing Na+ levels by 6-fold over control, reaching levels 4 times higher than in the cultivar. Nonetheless, H2O2-detoxifying enzymes were activated, and shoot elongation was sustained in this species, suggesting an efficient Na+ compartmentalization. On the other hand, the domestic cultivar had the highest accumulation of Na+ in roots and showed the lowest ability to sustain growth under combined stress. Leaves of S. habrochaites showed a huge proline buildup under salt stress, whereas S. neorickii and S. galapagense seemed to prevent proline accumulation. S. habrochaites also had high levels of antioxidant metabolites and superoxide dismutase activity under control conditions but downregulated further antioxidant defenses in response to stress exposure. No oxidative damages were noticed despite the almost 2-fold increase in ROS content in the leaves of S. neorickii under salt stress, which showed a negative correlation with growth traits, but an improvement in the antioxidant potential. A principal component analysis (PCA) revealed five PCs with eigenvalues >1, explaining 84 % of the total variability, and suggesting a separation of the evaluated samples mainly in accordance with the type of redox disturbances and antioxidant defenses employed, levels of photosynthetic pigments, balance between Na+ and K+ uptake and proline accumulation. These findings show that wild tomato plants respond differently than cultivated ones under moderate salinity and reduced water availability, suggesting interesting osmoregulatory and antioxidant mechanisms in S. galapagense and S. habrochaites.
7.
Advancements in visible light-driven micro/nanomotors for photodegradation of environmental pollutants
Ferreira, VR
; Azenha, M
in ENVIRONMENTAL SCIENCE-ADVANCES, 2024, ISSN: 2754-7000,
Review, Indexed in: crossref, scopus, wos
Abstract
Visible light-driven motors (Vis-LDMs) have shown significant potential for water decontamination processes through the synergistic interaction between their active movement and photocatalytic properties, enabling more efficient degradation of organic pollutants. This review highlights recent advances in Vis-LDMs photocatalysts for sustainable environmental pollution mitigation. Innovations include fuel-less Vis-LDMs with hybrid structures and crystalline materials, and biofuel alternatives like water and glucose, though logistical challenges persist. The use of natural materials like lignin and cellulose nanocrystals promotes sustainability but faces energy conversion efficiency challenges. Strategies to enhance efficiency, such as doping and heterojunction formation, are discussed. Advances in stability, reuse, and magnetic recovery capabilities are also reviewed. Collective behavior and environmental adaptability are explored to improve catalytic efficiency. Despite the presented advances, definitive solutions to these limitations have not yet been found. A perspective on the directions for future research is also included in this review, namely the need to resolve issues of scalability, cost-effectiveness, and environmental compatibility. Additionally, investing in Vis-LDMs with programmable routes and precise navigation can enhance versatility and accuracy. Selective behavior to target hazardous contaminants is important; the molecular imprinting technique being a potential solution. Future research should also focus on real-world testing and navigation improvements. Overcoming these challenges is essential to fully harness the potential of Vis-LDMs for environmental remediation and global environmental health. Recent advances (2020-2024) in visible light-driven motors to enhance pollutant photodegradation are reviewed. An overview of challenges and perspectives for future research is provided.
8.
Multivariate analysis applied to X-ray fluorescence to assess soil contamination pathways: case studies of mass magnetic susceptibility in soils near abandoned coal and W/Sn mines
Milinovic, J
; Santos, P
; Sant'Ovaia, H
; Futuro, A
; Pereira, CM
; Murton, BJ
; Flores, D
; Azenha, M
in ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2024, ISSN: 0269-4042, Volume: 46,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
Determining the origin and pathways of contaminants in the natural environment is key to informing any mitigation process. The mass magnetic susceptibility of soils allows a rapid method to measure the concentration of magnetic minerals, derived from anthropogenic activities such as mining or industrial processes, i.e., smelting metals (technogenic origin), or from the local bedrock (of geogenic origin). This is especially effective when combined with rapid geochemical analyses of soils. The use of multivariate analysis (MVA) elucidates complex multiple-component relationships between soil geochemistry and magnetic susceptibility. In the case of soil mining sites, X-ray fluorescence (XRF) spectroscopic data of soils contaminated by mine waste shows statistically significant relationships between magnetic susceptibility and some base metal species (e.g., Fe, Pb, Zn, etc.). Here, we show how qualitative and quantitative MVA methodologies can be used to assess soil contamination pathways using mass magnetic susceptibility and XRF spectra of soils near abandoned coal and W/Sn mines (NW Portugal). Principal component analysis (PCA) showed how the first two primary components (PC-1 + PC-2) explained 94% of the sample variability, grouped them according to their geochemistry and magnetic susceptibility in to geogenic and technogenic groups. Regression analyses showed a strong positive correlation (R-2 > 0.95) between soil geochemistry and magnetic properties at the local scale. These parameters provided an insight into the multi-element variables that control magnetic susceptibility and indicated the possibility of efficient assessment of potentially contaminated sites through mass-specific soil magnetism.
9.
Improved X-ray fluorescence spectroscopic monitoring of potentially toxic elements by multivariate analysis: A case study of soils near abandoned coal mines (NW Portugal)
Milinovic, J
; Vale, C
; Futuro, A
; Pereira, C
; Flores, D
; Azenha, M
in JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, ISSN: 2213-2929, Volume: 12,
Article, Indexed in: crossref, scopus, wos
Abstract
Reusing soils near abandoned mines requires the assessment of soil quality, which includes determining potentially toxic elements (PTEs), such as As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Sr, Zn and Zr. Levels of PTEs in soil can be harmful. Hence, the measurement of their concentrations is crucial to assess whether soil properties are reusable or it represents a potential environmental risk. Field techniques such as X-ray fluorescence (XRF) imprinting may be an option for rapid PTEs monitoring. Still, due to low sensitivity and selectivity, the partially obtained results by XRF software can be biased. This study presents an alternative solution for soil PTEs monitoring based on the advantages of multivariate analysis (MVA) principally partial least square (PLS) regression applied to orthogonally signal-corrected (OSC) XRF spectroscopic data. The developed PLS models were applied to soil samples from two regions of adjacent abandoned coal mines, in NW Portugal. High correlation coefficients obtained for As, Fe, Pb, Sr and Zn validation models (R2 = 0.79-0.99) pointed to the improved accuracy of their monitoring (compared to directly obtained XRF results) in this regional soil environment. The other PTEs (Co, Cr, Cu, Ni and Zr) showed good PLS models at local environment (R2 = 0.84-0.98). The test of these models in the contaminated regions reinforces their effectiveness in monitoring contaminated soils toward the reuse of environments near abandoned mines.
10.
Enhancing tomato plants' tolerance to combined heat and salt stress - The role of arbuscular mycorrhizae and biochar
Sousa, B
; Soares, C
; Sousa, F
; Martins, M
; Mateus, P
; Rodrigues, F
; Azenha, M
; Moutinho-Pereira, J
; Lino-Neto, T
; Fidalgo, F
in SCIENCE OF THE TOTAL ENVIRONMENT, 2024, ISSN: 0048-9697, Volume: 948,
Article, Indexed in: crossref, scopus, wos
Abstract
The Mediterranean basin is highly susceptible to climate change, with soil salinization and the increase in average temperatures being two of the main factors affecting crop productivity in this region. Following our previous studies on describing the detrimental effects of heat and salt stress co-exposure on tomato plants, this study aimed to understand if substrate supplementation with a combination of arbuscular mycorrhizal fungi (AMF) and biochar could mitigate the negative consequences of these stresses. Upon 21 days of exposure, stressed tomato plants grown under supplemented substrates showed increased tolerance to heat (42 degrees C for 4 h/ day), salt (100 mM NaCl), and their combination, presenting increased biomass and flowering rate. The beneficial effects of AMF and biochar were associated with a better ionic balance (i.e. lower sodium accumulation and higher uptake of calcium and magnesium) and increased photosynthetic efficiency. Indeed, these plants presented higher chlorophyll content and improved CO2 assimilation rates. Biochemical data further supported that tomato plants grown with AMF and biochar were capable of efficiently modulating their defence pathways, evidenced by the accumulation of proline, ascorbate, and glutathione, coupled with a lower dependency on energy-costly enzymatic antioxidant players. In summary, the obtained data strongly point towards a beneficial role of combined AMF and biochar as sustainable tools to improve plant growth and development under a climate change scenario, where soil salinization and heat peaks often occur together.