Showing: 10 from total: 533 publications
1. Thermodynamic Study of Alkylsilane and Alkylsiloxane-Based Ionic Liquids
Silva, RMA ; Montes-Campos, H ; Ferreira, AIMCL ; Bakis, E ; Santos, LMNBF
in JOURNAL OF PHYSICAL CHEMISTRY B, 2024, ISSN: 1520-6106,  Volume: 128, 
Article in Press,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract The thermodynamic properties of ionic liquids (ILs) bearing alkylsilane and alkylsiloxane chains, as well as their carbon-based analogs, were investigated. Effects such as the replacement of carbon atoms by silicon atoms, the introduction of a siloxane linkage, and the length of the alkylsilane chain were explored. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the thermal and phase behavior (glass transition temperature, melting point, enthalpy and entropy of fusion, and thermal stability). Heat capacity was obtained by high-precision drop calorimetry and differential scanning microcalorimetry. The volatility and cohesive energy of these ILs were investigated via the Knudsen effusion method coupled with a quartz crystal microbalance (KEQCM). Gas phase energetics and structure were also studied to obtain the gas phase heat capacity as well as the energy profile associated with the rotation of the IL side chain. The computational study suggested the existence of an intramolecular interaction in the alkylsiloxane-based IL. The obtained glass transition temperatures seem to follow the trend of chain flexibility. An increase of the alkylsilane chain leads to a seemingly linear increase in molar heat capacity. A regular increment of 30 JK-1mol(-1) in the molar heat capacity was found for the replacement of carbon by silicon in the IL alkyl chain. The alkylsilane series was revealed to be slightly more volatile than its carbon-based analogs. A further increase in volatility was found for the alkylsiloxane-based IL, which is likely related to the decrease of the cohesive energy due to the existence of an intramolecular interaction between the siloxane linkage and the imidazolium headgroup. The use of Si in the IL structure is a suitable way to significantly reduce the IL's viscosity while preserving its large liquid range (low melting point and high thermal stability) and low volatilities.

2. Ternary (molybdenum disulfide/graphene)/carbon nanotube nanocomposites assembled via a facile colloidal electrostatic path as electrocatalysts for the oxygen reduction reaction: Composition and nitrogen-doping play a key role in their performance
Rocha, M ; Abreu, B ; Nunes, MS ; Freire, C ; Marques, EF
in JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, ISSN: 0021-9797,  Volume: 664, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Nanocomposites have garnered attention for their potential as catalysts in electrochemical reactions vital for technologies like fuel cells, water splitting, and metal-air batteries. This work focuses on developing threedimensional (3D) nanocomposites through aqueous phase exfoliation, non-covalent functionalization of building blocks with surfactants and polymers, and electrostatic interactions in solution leading to the nanocomposites assembly and organization. By combining molybdenum disulfide (MoS2) layers with graphene nanoplatelets (GnPs) to form a binary 2D composite (MoS2/GnP), and subsequently incorporating multiwalled carbon nanotubes (MWNTs) to create ternary 3D composites, we explore their potential as catalysts for the oxygen reduction reaction (ORR) critical in fuel cells. Characterization techniques such as X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction elucidate material composition and structure. Our electrochemical studies reveal insights into the kinetics of the reactions and structure-activity relationships. Both the (MoS2/GnP)-to-MWNT mass ratio and nitrogen-doping of GnPs (N-GnPs) play a key role on the electrocatalytic ORR performance. Notably, the (MoS2/N-GnP)/MWNT material, with a 3:1 mass ratio, exhibits the most effective ORR activity. All catalysts demonstrate good long-term stability and methanol crossover tolerance. This facile fabrication method and observed trends offer avenues for optimizing composite electrocatalysts further.

3. Seasoning antimalarial drugs' action: chloroquine bile salts as novel triple-stage antiplasmodial hits
Silva, AT ; Oliveira, I ; Duarte, D ; Moita, D ; Prudencio, M ; Nogueira, F ; Ferraz, R ; Marques, EF ; Gomes, P
in RSC MEDICINAL CHEMISTRY, 2024, ISSN: 2632-8682, 
Article in Press,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Malaria is one of the big three global infectious diseases, having caused above two hundred million cases and over half a million deaths in 2020. The continuous demand for new treatment options prioritizes the cost-effective development of new chemical entities with multi-stage antiplasmodial activity, for higher efficacy and lower propensity to elicit drug-resistant parasite strains. Following up on our long-term research towards the rescue of classical antimalarial aminoquinolines like chloroquine and primaquine, we have developed new organic salts by acid-base pairing of those drugs with natural bile acids. These antimalarial drug-derived bile salts were screened in vitro against the hepatic, blood and gametocyte stages of Plasmodium parasites, unveiling chloroquine bile salts as unprecedented triple-stage antiplasmodial hits. These findings pave a new pathway for drug rescuing, even beyond anti-malarial and other anti-infective drugs. Malaria is one of the big three global infectious diseases, with the heaviest toll on human lives in low-to-middle income countries. Cost-effective antimalarial drugs with multi-stage action remain an unmet and urgent need in global healthcare.

4. The Cohesive Interactions in Phenylimidazoles
Costa, JCS ; Ferreira, AIMCL ; Lima, CFRAC ; Santos, LMNBF
in JOURNAL OF PHYSICAL CHEMISTRY A, 2024, ISSN: 1089-5639,  Volume: 128, 
Article in Press,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract This work presents a comprehensive study exploring the thermodynamics of the solid phase of a series of phenylimidazoles, encompassing experimental measurements of heat capacity, volatility, and thermal behavior. The influence of successive phenyl group insertions on the imidazole ring on thermodynamic properties and supramolecular behavior was thoroughly examined through the evaluation of 2-phenylimidazole (2-PhI), 4-phenylimidazole (4-PhI), 4,5-diphenylimidazole (4,5-DPhI), and 2,4,5-triphenylimidazole (2,4,5-TPhI). Structural correlations between molecular structure and thermodynamic properties were established. Furthermore, the investigation employed UV-vis spectroscopy and quantum chemical calculations. Additive effects arising from the introduction of phenyl groups were found through the analysis of the solid-liquid and solid-gas equilibria, as well as heat capacities. A good correlation emerged between the thermodynamic properties of sublimation and the molar volume of the unit cell, evident across 2-PhI, 4,5-DPhI, and 2,4,5-TPhI. In contrast to its isomer 2-PhI, 4-PhI exhibited greater cohesive energy due to the stronger N-HN intermolecular interactions, leading to the disruption of coplanar geometry in the 4-PhI molecules. The observed higher entropies of phase transition (fusion and sublimation) are consistent with the higher structural order observed in the crystalline lattice of 4-PhI.

5. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery
Silva, B ; Marques, EF ; Gomes, AC
in EXPERT OPINION ON DRUG DELIVERY, 2024, ISSN: 1742-5247, 
Review,  Indexed in: crossref, scopus, wos 
Abstract Introduction: Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. Areas covered: In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. Expert opinion: Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health. [GRAPHICS]

6. Cationic Serine-Based Gemini Surfactant:Monoolein Aggregates as Viable and Efficacious Agents for DNA Complexation and Compaction: A Cytotoxicity and Physicochemical Assessment
Oliveira, IS ; Silva, SG ; Gomes, AC ; Oliveira, MECDR ; do Vale, MLC ; Marques, EF
in JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, ISSN: 2079-4983,  Volume: 15, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/-) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)2N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH2 spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)2N5:MO aggregates are non-cytotoxic up to 35-90 mu M, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)2N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini-MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.

7. Phase behaviour and heat capacities of DBN and DBU based protic ionic liquids - Insights into the ionic character and nanostructuration
Ribeiro, FMS ; Silva, RMA ; Santos, LMNBF ; Lima, CFRAC
in JOURNAL OF MOLECULAR LIQUIDS, 2024, ISSN: 0167-7322,  Volume: 411, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Herein, we report the thermal behavior and high-precision heat capacity values, at T = 298.15 K, and in the range from 283 to 363 K, for several protic ionic liquids (PILs), derived from the 1:1 liquid mixtures of the organic superbases 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with some carboxylic acids (propionic, butyric, hexanoic and octanoic). Glass transition, T g , crystallization, T c , cold- crystallization, T cc , and melting, T m , temperatures were determined for the PILs studied, showing marked differences with the base - T g is lower for all DBN PILs, and no T m , T c , and T cc could be obtained for the DBU PILs. The standard molar heat capacities, C 0 p , m , were obtained with an uncertainty of less than +/- 0.3 % and their dependence on the base and on the acid's chain length was studied in detail. The C 0 p , m of the DBU PILs were found to be significantly higher than those of the corresponding DBN PILs, which corroborates the greater ionic character of DBU PILs. The heat capacity data suggested the existence of a trend-shift with the chain length of the carboxylic acid. Similar to aprotic ionic liquids, the shift occurs around n = 5 (pentanoic acid) and suggests the existence of some degree of nanostructuration into polar and non-polar domains in PILs with larger acids. Moreover, PILs can display abnormally high excess heat capacities, resulting from the formation of an ionic mixture from neutral species. Analysis of the calculated excess heat capacities indicates that PILs tend to become less ionic as the temperature increases, which goes in accordance with the acid-base equilibrium shift.

8. High efficacy of chloroquine-derived bile salts in Pluronic F127 micelles against blood-stage Plasmodium falciparum
Silva, AT ; Oliveira, IS ; Morais, I ; Santana, S ; Workneh, EA ; Prudêncio, M ; Nogueira, F ; Ferraz, R ; Gomes, P ; Marques, EF
in JOURNAL OF MOLECULAR LIQUIDS, 2024, ISSN: 0167-7322,  Volume: 413, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Colloidal nanocarriers can play a key role in the efficacious delivery of drugs, including antimalarials. Here, we investigated the ability of polymeric micelles of the block copolymer F127 to act as nanovehicles for two organic salts derived from chloroquine and human bile acids, namely, chloroquinium cholate (iCQP1) and chloroquinium glycocholate (iCQP1g). We have previously reported the strong in vitro antiplasmodial activity of these salts, which displayed IC50 values of 13 and 15 nM against blood forms of Plasmodium falciparum, respectively. By deriving from amphiphilic lipids, iCQP1 and iCQP1g also enclose the ability to act as surface-active ionic liquids (SAILs). The micellization properties of neat F127 and of the F127/SAIL mixtures were initially investigated to gain physicochemical insight into the interaction between polymer and bioactive SAILs, resorting to differential scanning calorimetry, surface tension measurements and dynamic light scattering. Micelle formation by F127 is an endothermic process strongly temperature and concentration dependent. Interestingly, this process is significantly changed when the molar fraction of SAIL (x(SAIL)) in the F127/SAIL mixture is varied between 0.33 and 0.90. Both SAILs favor the formation of mixed micelles by decreasing the micellization temperature, and (observed only when for x(SAIL) = 0.33) by synergistically decreasing the cmc. Concomitantly, the micellar size is reduced from 18 to 13 nm as x(SAIL) is increased from 0.33 to 0.90. Crucially, in vitro assays show that when the SAILs are loaded into F127 polymeric micelles, their antiplasmodial efficacy is substantially enhanced, with a significant drop in IC50, especially for the iCQP1/F127 system. This opens new possibilities for the nanoformulations of antimalarial compounds.

9. Effect of DMSO on Structural Properties of DMPC and DPPC Liposome Suspensions
Amaral, MPF ; Rangel, M ; Bastos, M
in Journal of Functional Biomaterials, 2024, ISSN: 2079-4983,  Volume: 15, 
Article,  Indexed in: crossref, scopus 
Abstract The study and characterization of the biophysical properties of membranes and drug–membrane interactions represent a critical step in drug development, as biological membranes act as a barrier that the drug must overcome to reach its active site. Liposomes are widely used in drug delivery to circumvent the poor aqueous solubility of most drugs, improving systemic bioavailability and pharmacokinetics. Further, they can be targeted to deliver to specific disease sites, thus decreasing drug load, and reducing side effects and poor adherence to treatment. To improve drug solubility during liposome preparation, DMSO is the most widely used solvent. This raises concern about the potential effect of DMSO on membranes and leads us to investigate, using DSC and EPR, the influence of DMSO on the behavior of lipid model membranes of DMPC and DPPC. In addition, we tested the influence of DMSO on drug–membrane interaction, using compounds with different hydrophobicity and varying DMSO content, using the same experimental techniques. Overall, it was found that with up to 10% DMSO, changes in the bilayer fluidity or the thermotropic properties of the studied liposomes were not significant, within the experimental uncertainty. For higher concentrations of DMSO, there is a stabilization of both the gel and the rippled gel phases, and increased bilayer fluidity of DMPC and DPPC liposomes leading to an increase in membrane permeability. © 2024 by the authors.

10. Carbon-Induced Changes in the Morphology and Wetting Behavior of Ionic Liquids on the Mesoscale
Carvalho, RM ; Santos, LMNBF ; Bastos, M ; Costa, JCS
in LANGMUIR, 2024, ISSN: 0743-7463,  Volume: 40, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Thin films of ionic liquids (ILs) have gained significant attention due to their unique properties and broad applications. Extensive research has focused on studying the influence of ILs' chemical composition and substrate characteristics on the structure and morphology of IL films at the nano- and mesoscopic scales. This study explores the impact of carbon-coated surfaces on the morphology and wetting behavior of a series of alkylimidazolium-based ILs. Specifically, this work investigates the effect of carbon coating on the morphology and wetting behavior of short-chain ([C(2)C(1)im][NTf2] and [C(2)C(1)im][OTf]) and long-chain ([C(8)C(1)im][NTf2] and [C(8)C(1)im][OTf]) ILs deposited on indium tin oxide (ITO), silver (Ag), and gold (Au) substrates. A reproducible vapor deposition methodology was utilized for the deposition process. High-resolution scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were used to analyze the morphological and structural characteristics of the substrates and obtained IL films. The experimental data revealed that the IL films deposited on carbon-coated Au substrates showed minor changes in their morphology compared to that of the films deposited on clean Au surfaces. However, the presence of carbon coatings on the ITO and Ag surfaces led to significant morphological alterations in the IL films. Specifically, for short-chain ILs, the carbon film surface induced 2D growth of the IL film, followed by subsequent island growth. In contrast, for long-chain ILs deposited on carbon surfaces, layer-by-layer growth occurred without island formation, resulting in highly uniform and coalesced IL films. The extent of morphological changes observed in the IL films was found to be influenced by two crucial factors: the thickness of the carbon film on the substrate surface and the amount of IL deposition.