Showing: 10 from total: 54 publications
1.
Correia et al. Beyond Penicillin: The Potential of Filamentous Fungi for Drug Discovery in the Age of Antibiotic Resistance (vol 12, 1250, 2023)
Correia, J
; Borges, A
; Simoes, M
; Simoes, LC
in ANTIBIOTICS-BASEL, 2024, ISSN: 2079-6382, Volume: 13,
Correction, Indexed in: crossref, wos
Abstract
<jats:p>Manuel Simões was included as a corresponding author in the original publication [...]</jats:p>
2.
Efficacy of Novel Quaternary Ammonium and Phosphonium Salts Differing in Cation Type and Alkyl Chain Length against Antibiotic-Resistant Staphylococcus aureus
Nunes, B
; Cagide, F
; Fernandes, C
; Borges, A
; Borges, F
; Simoes, M
in INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, ISSN: 1661-6596, Volume: 25,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
Antibacterial resistance poses a critical public health threat, challenging the prevention and treatment of bacterial infections. The search for innovative antibacterial agents has spurred significant interest in quaternary heteronium salts (QHSs), such as quaternary ammonium and phosphonium compounds as potential candidates. In this study, a library of 49 structurally related QHSs was synthesized, varying the cation type and alkyl chain length. Their antibacterial activities against Staphylococcus aureus, including antibiotic-resistant strains, were evaluated by determining minimum inhibitory/bactericidal concentrations (MIC/MBC) <= 64 mu g/mL. Structure-activity relationship analyses highlighted alkyl-triphenylphosphonium and alkyl-methylimidazolium salts as the most effective against S. aureus CECT 976. The length of the alkyl side chain significantly influenced the antibacterial activity, with optimal chain lengths observed between C-10 and C-14. Dose-response relationships were assessed for selected QHSs, showing dose-dependent antibacterial activity following a non-linear pattern. Survival curves indicated effective eradication of S. aureus CECT 976 by QHSs at low concentrations, particularly compounds 1e, 3e, and 5e. Moreover, in vitro human cellular data indicated that compounds 2e, 4e, and 5e showed favourable safety profiles at concentrations <= 2 mu g/mL. These findings highlight the potential of these QHSs as effective agents against susceptible and resistant bacterial strains, providing valuable insights for the rational design of bioactive QHSs.
3.
Visible-light photoactivated proanthocyanidin and kappa-carrageenan coating with anti-adhesive properties against clinically relevant bacteria
Santinon, C
; Borges, A
; Simoes, M
; Gonçalves, ASC
; Beppu, MM
; Vieira, MGA
in INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, ISSN: 0141-8130, Volume: 263,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
The increase of bacterial resistance to antibiotics is a growing concern worldwide and the search for new therapies could cost billions of dollars and countless lives. Inert surfaces are major sources of contamination due to easier adhesion and formation of bacterial biofilms, hindering the disinfection process. Therefore, the objective of this study was to develop a photoactivatable and anti-adhesive kappa-carrageenan coating using proanthocyanidin as a photosensitizer. The complete reduction (>5-log(10) CFU/cm(3)) of culturable cells of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa pathogens was achieved after 30 min of exposure to visible light (420 nm; 30 mW/cm(2)) with 5 % (w/v) of the photosensitizer. Cell membrane damage was confirmed by measuring potassium leakage, epifluorescence microscopy and bacterial motility analysis. Overall, visible light irradiation on coated solid surfaces mediated by proanthocyanidin showed no cytotoxicity and inactivated clinically important pathogens through the generation of reactive oxygen species, inhibiting bacterial initial adhesion. The developed coating is a promising alternative for a wide range of applications related to surface disinfection and food biopreservation.
4.
Dual action of benzaldehydes: Inhibiting quorum sensing and enhancing antibiotic efficacy for controlling Pseudomonas aeruginosa biofilms
Leitao, MM
; Vieira, TF
; Sousa, SF
; Borges, F
; Simoes, M
; Borges, A
in MICROBIAL PATHOGENESIS, 2024, ISSN: 0882-4010, Volume: 191,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
Quorum sensing (QS) has a central role in biofilm lifestyle and antimicrobial resistance, and disrupting these signaling pathways is a promising strategy to control bacterial pathogenicity and virulence. In this study, the efficacy of three structurally related benzaldehydes (4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde)) in disrupting the las and pqs systems of Pseudomonas aeruginosa was investigated using bioreporter strains and computational simulations. Additionally, these benzaldehydes were combined with tobramycin and ciprofloxacin antibiotics to evaluate their ability to increase antibiotic efficacy in preventing and eradicating P. aeruginosa biofilms. To this end, the total biomass, metabolic activity and culturability of the biofilm cells were determined. In vitro assays results indicated that the aromatic aldehydes have potential to inhibit the las and pqs systems by > 80 %. Molecular docking studies supported these findings, revealing the aldehydes binding in the same pocket as the natural ligands or receptor proteins (LasR, PQSA, PQSE, PQSR). Benzaldehydes were shown to act as virulence factor attenuators, with vanillin achieving a 48 % reduction in pyocyanin production. The benzaldehyde-tobramycin combination led not only to a 60 % reduction in biomass production but also to a 90 % reduction in the metabolic activity of established biofilms. A similar result was observed when benzaldehydes were combined with ciprofloxacin. 4-Hydroxybenzaldehyde demonstrated relevant action in increasing biofilm susceptibility to ciprofloxacin, resulting in a 65 % reduction in biomass. This study discloses, for the first time, that the benzaldehydes studied are potent QS inhibitors and also enhancers of antibiotics antibiofilm activity against P. aeruginosa.
5.
Photodynamic activation of phytochemical-antibiotic combinations for combatting Staphylococcus aureus from acute wound infections
Gonçalves, ASC
; Leitao, MM
; Fernandes, JR
; Saavedra, MJ
; Pereira, C
; Simoes, M
; Borges, A
in JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2024, ISSN: 1011-1344, Volume: 258,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
Staphylococcus aureus is characterized by its high resistance to conventional antibiotics, particularly methicillinresistant (MRSA) strains, making it a predominant pathogen in acute and chronic wound infections. The persistence of acute S. aureus wound infections poses a threat by increasing the incidence of their chronicity. This study investigated the potential of photodynamic activation using phytochemical-antibiotic combinations to eliminate S. aureus under conditions representative of acute wound infections, aiming to mitigate the risk of chronicity. The strategy applied takes advantage of the promising antibacterial and photosensitising properties of phytochemicals, and their ability to act as antibiotic adjuvants. The antibacterial activity of selected phytochemicals (berberine, curcumin, farnesol, gallic acid, and quercetin; 6.25 - 1000 mu g/mL) and antibiotics (ciprofloxacin, tetracycline, fusidic acid, oxacillin, gentamicin, mupirocin, methicillin, and tobramycin; 0.0625 - 1024 mu g/mL) was screened individually and in combination against two S. aureus clinical strains (methicillin-resistant and-susceptible - MRSA and MSSA). The photodynamic activity of the phytochemicals was assessed using a lightemitting diode (LED) system with blue (420 nm) or UV-A (365 nm) variants, at 30 mW/cm 2 (light doses of 9, 18, 27 J/cm 2 ) and 5.5 mW/cm 2 (light doses of 1.5, 3.3 and 5.0 J/cm 2 ), respectively. Notably, all phytochemicals restored antibiotic activity, with 9 and 13 combinations exhibiting potentiating effects on MSSA and MRSA, respectively. Photodynamic activation with blue light (420 nm) resulted in an 8- to 80-fold reduction in the bactericidal concentration of berberine against MSSA and MRSA, while curcumin caused 80-fold reduction for both strains at the light dose of 18 J/cm 2 . Berberine and curcumin-antibiotic combinations when subjected to photodynamic activation (420 nm light, 10 min, 18 J/cm 2 ) reduced S. aureus culturability by approximate to 9 log CFU/mL. These combinations lowered the bactericidal concentration of antibiotics, achieving a 2048-fold reduction for gentamicin and 512-fold reduction for tobramycin. Overall, the dual approach involving antimicrobial photodynamic inactivation and selected phytochemical-antibiotic combinations demonstrated a synergistic effect, drastically reducing the culturability of S. aureus and restoring the activity of gentamicin and tobramycin.
6.
Antimicrobial cyclodextrin-assisted electrospun fibers loaded with carvacrol, citronellol and cinnamic acid for wound healing
Gonzalez-Prada, I
; Borges, A
; Santos-Torres, B
; Magariños, B
; Simoes, M
; Concheiro, A
; Alvarez-Lorenzo, C
in INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, ISSN: 0141-8130, Volume: 277,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
This work aimed to explore an alternative to the use of antibiotics for prevention and treatment of wounds infection caused by two common bacterial pathogens Staphylococcus aureus and Pseudomonas aeruginosa. For this purpose, three different essential oil components (EOCs), namely carvacrol, citronellol and cinnamic acid, were loaded into electrospun fibers of poly-epsilon-caprolactone (PCL) aided by alpha-cyclodextrin (alpha CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD). Electrospun-fibers prepared with each EOC and their mixtures were screened for antimicrobial capability and characterized regarding morphological, mechanical, thermal, surface polarity, antibiofilm and antioxidant properties. alpha CD formed poly(pseudo)rotaxanes with PCL and weakly interacted with EOCs, while HP beta CD facilitated EOC encapsulation and formation of homogeneous fibers (500-1000 nm diameter) without beads. PCL/HP beta CD fibers with high concentration of EOCs (mainly carvacrol and cinnamic acid) showed strong antibiofilm (>3 log CFU reduction) and antioxidant activity (10-50% DPPH scavenging effects). Different performances were recorded for the EOCs and their mixtures; cinnamic acid migrated to fiber surface and was released faster. Fibers biocompatibility was verified using hemolysis tests and in ovo tissue integration and angiogenesis assays. Overall, HP beta CD facilitates complete release of EOCs from the fibers to the aqueous medium, being an environment-friendly and cost-effective strategy for the treatment of infected wounds.
7.
Montelukast and cefoperazone act as antiquorum sensing and antibiofilm agents against Pseudomonas aeruginosa
Vieira, TF
; Leitao, MM
; Cerqueira, NMFSA
; Sousa, SF
; Borges, A
; Simoes, M
in JOURNAL OF APPLIED MICROBIOLOGY, 2024, ISSN: 1364-5072, Volume: 135,
Article, Indexed in: crossref, scopus, wos
Abstract
Aims Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control.Methods and results The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm.Conclusion This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.
8.
Exploring grape pomace extracts for the formulation of new bioactive multifunctional chitosan/alginate-based hydrogels for wound healing applications
Teixeira, S
; Sousa, M
; Massano, F
; Borges, A
in Food Bioscience, 2024, ISSN: 2212-4292, Volume: 62,
Article, Indexed in: crossref, scopus
Abstract
Chronic wounds incidence is increasing and affects millions of people around the world, causing great psychological and socio-economic impacts. However, treatments that can effectively promote wound healing are still lacking. In this study, grape pomace (GP), the main residue from winemaking production was explored as a source of high added-value raw material directed for the topical treatment of Staphylococcus aureus chronic wound infections. Crude GP extracts (composed of stalks or a skin and seeds mixture–from red and white grape varieties) obtained using a modified solid-liquid extraction (water, ethanol, and acetone solvents) were evaluated for their antioxidant capacity (ABTS and DPPH assays), as well as the richness of phenolic compounds (total phenolic content-TPC, total flavonoid content-TFC, and HPLC-DAD assays). The GP extracts with the most favorable results were incorporated in a chitosan-alginate hydrogel (cross-linked with glutaraldehyde and calcium chloride), characterized (swelling, degradation, and release properties), and tested for its bioactivity (antioxidant and antimicrobial potential). TPC and TFC were higher in red GP extracts, as confirmed by the HPLC analysis, indicating a greater diversity of compounds in these extracts. Ethanolic white GP extracts (from skin-seeds mixture) showed the highest extraction yield and antioxidant activity. Their incorporation into the chitosan-alginate hydrogel improved its swelling and antimicrobial properties (total cytoplasmic membranes disruption and culturability reduction). A biomaterial with high swelling capacity and antibacterial activity against S. aureus was obtained, which can potentially promote wound healing by exudate absorption and infection clearance while promoting valorization of by-products and stimulating a circular economy. © 2024 The Authors
9.
A procedure to harmonize the hydrodynamic force during microbial cultivation in shaking flasks
Simoes, LC
; Oliveira, I
; Borges, A
; Gomes, IB
; Simoes, M
in JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION, 2023, ISSN: 1935-7877, Volume: 24,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
Shake flask cultivation is a routine technique in microbiology and biotechnology laboratories where cell growth can be affected by the hydrodynamic conditions, which depend on the agitation velocity, shaking diameter, and shake flask size. Liquid agitation is implemented inherently to increase aeration, substrate transfer to the cells, and prevent sedimentation, disregarding the role of hydrodynamics in microbial growth and metabolism. Here, we present a simple approach to help standardize the hydrodynamic forces in orbital shakers to increase the experimental accuracy and reproducibility and give students a better knowledge of the significance of the agitation process in microbial growth.
10.
Hydrocinnamic Acid and Perillyl Alcohol Potentiate the Action of Antibiotics against Escherichia coli
Sousa, M
; Afonso, AC
; Teixeira, LS
; Borges, A
; Saavedra, MJ
; Simoes, LC
; Simoes, M
in ANTIBIOTICS-BASEL, 2023, ISSN: 2079-6382, Volume: 12,
Article, Indexed in: crossref, scopus, wos
Abstract
The treatment of bacterial infections has been troubled by the increased resistance to antibiotics, instigating the search for new antimicrobial therapies. Phytochemicals have demonstrated broad-spectrum and effective antibacterial effects as well as antibiotic resistance-modifying activity. In this study, perillyl alcohol and hydrocinnamic acid were characterized for their antimicrobial action against Escherichia coli. Furthermore, dual and triple combinations of these molecules with the antibiotics chloramphenicol and amoxicillin were investigated for the first time. Perillyl alcohol had a minimum inhibitory concentration (MIC) of 256 mu g/mL and a minimum bactericidal concentration (MBC) of 512 mu g/mL. Hydrocinnamic acid had a MIC of 2048 mu g/mL and an MBC > 2048 mu g/mL. Checkerboard and time-kill assays demonstrated synergism or additive effects for the dual combinations chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid, and amoxicillin/hydrocinnamic acid at low concentrations of both molecules. Combenefit analysis showed synergism for various concentrations of amoxicillin with each phytochemical. Combinations of chloramphenicol with perillyl alcohol and hydrocinnamic acid revealed synergism mainly at low concentrations of antibiotics (up to 2 mu g/mL of chloramphenicol with perillyl alcohol; 0.5 mu g/mL of chloramphenicol with hydrocinnamic acid). The results highlight the potential of combinatorial therapies for microbial growth control, where phytochemicals can play an important role as potentiators or resistance-modifying agents.