Showing: 10 from total: 36 publications
1.
Gold-coated silver nanorods on side-polished singlemode optical fibers for remote sensing at optical telecommunication wavelengths
dos Santos, PSS
; Mendes, JP
; Pastoriza-Santos, I
; Juste, JP
; de Almeida, JMMM
; Coelho, LCC
in SENSORS AND ACTUATORS B-CHEMICAL, 2025, ISSN: 0925-4005, Volume: 425,
Article, Indexed in: crossref, scopus, wos
Abstract
The lower refractive index sensitivity (RIS) of plasmonic nanoparticles (NP) in comparison to their plasmonic thin films counterparts hindered their wide adoption for wavelength-based sensor designs, wasting the NP characteristic field locality. In this context, high aspect-ratio colloidal core-shell Ag@Au nanorods (NRs) are demonstrated to operate effectively at telecommunication wavelengths, showing RIS of 1720 nm/RIU at 1350 nm (O-band) and 2325 nm/RIU at 1550 nm (L-band), representing a five-fold improvement compared to similar Au NRs operating at equivalent wavelengths. Also, these NRs combine the superior optical performance of Ag with the Au chemical stability and biocompatibility. Next, using a side-polished optical fiber, we detected glyphosate, achieving a detection limit improvement from 724 to 85 mg/L by shifting from the O to the C/L optical bands. This work combines the significant scalability and cost-effective advantages of colloidal NPs with enhanced RIS, showing a promising approach suitable for both point-of-care and long-range sensing applications at superior performance than comparable thin film-based sensors in either environmental monitoring and other fields.
2.
Comparative Analysis of Ethanol Gas Sensors Based on Bloch Surface Wave and Surface Plasmon Resonance
Carvalho, PM
; Almeida, AS
; Mendes, P
; Coelho, CC
; De Almeida, MMM
in EPJ Web of Conferences, 2024, ISSN: 2101-6275, Volume: 305,
Proceedings Paper, Indexed in: crossref, scopus, unpaywall
Abstract
Ethanol plays a crucial role in modern industrial processes and consumer products. Despite its presence in human activity, short and long-term exposure to gaseous ethanol poses risks to health conditions and material damage, making the control of its concentration in the atmosphere of high importance. Ethanol optical sensors based on electromagnetic surface waves (ESWs) are presented, with sensitivity to ethanol vapours being achieved by the inclusion of ethanol-adsorptive zinc oxide (ZnO) layers. The changes in optical properties modulate the resonant conditions of ESWs, enabling the tracking of ethanol concentration in the atmosphere. A comprehensive comparative study of sensor performance is carried out between surface plasmon resonance (SPR) and Bloch surface wave (BSW) based sensors. Sensor efficiency is simulated by transfer matrix method towards optimized figures of merit (FoM). Preliminary results validate ethanol sensitivity of BSW based sensor, showcasing a possible alternative to electromagnetic and plasmonic sensors. © The Authors.
3.
Development of a new opto-electrochemical cell for sensing applications
Mendes, JP
; Coelho, LCC
; Ribeiro, JA
in 2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024, 2024, ISSN: 2994-9300,
Proceedings Paper, Indexed in: crossref, scopus, wos
Abstract
New systems with innovative design to perform measurements combining electrochemistry and surface plasmon resonance (ESPR) are currently a need to overcome the limitations of existent market solutions and expand the research possibilities of this technology. The main goal of this work was to develop a new cell to increase ESPR practical applications in several fields. To do so, a homemade SPR cell, fabricated by 3D-printing technology, was adapted for this purpose by incorporating the conventional 3-electrodes to perform the electrochemical experiments. The developed cell was fully compatible with commercial SPR substrates. After optimization of the homemade ESPR setup to perform the combined electrochemical and SPR measurements, two main applications were explored in this work. The first was the use of ESPR technology as straightforward tool to simultaneously investigate the electrical and optical properties of conducing/nonconducting polymers electrosynthetized on the SPR platforms. The conducting polymer poly(thionine) was used in this work for proof-of- concept. The second application envisaged the use of ESPR approach for simple electrodeposition of materials with enhanced plasmonic properties for sensitivity enhancement of SPR biosensors. For validation of the concept, graphene oxide (GO) was electrochemically reduced on gold substrates aiming to evaluate the plasmonic properties of graphene-modified sensing surfaces.
4.
Optical pH Sensor Based on a Long-Period Fiber Grating Coated with a Polymeric Layer-by-Layer Electrostatic Self-Assembled Nanofilm
Pereira, JM
; Mendes, JP
; Dias, B
; de Almeida, JMMM
; Coelho, LCC
in SENSORS, 2024, Volume: 24,
Article, Indexed in: crossref, scopus, wos
Abstract
An optical fiber pH sensor based on a long-period fiber grating (LPFG) is reported. Two oppositely charged polymers, polyethylenimine (PEI) and polyacrylic acid (PAA), were alternately deposited on the sensing structure through a layer-by-layer (LbL) electrostatic self-assembly technique. Since the polymers are pH sensitive, their refractive index (RI) varies when the pH of the solution changes due to swelling/deswelling phenomena. The fabricated multilayer coating retained a similar property, enabling its use in pH-sensing applications. The pH of the PAA dipping solution was tuned so that a coated LPFG achieved a pH sensitivity of (6.3 +/- 0.2) nm/pH in the 5.92-9.23 pH range. Only two bilayers of PEI/PAA were used as an overlay, which reduces the fabrication time and increases the reproducibility of the sensor, and its reversibility and repeatability were demonstrated by tracking the resonance band position throughout multiple cycles between different pH solutions. With simulation work and experimental results from a low-finesse Fabry-Perot (FP) cavity on a fiber tip, the coating properties were estimated. When saturated at low pH, it has a thickness of 200 nm and 1.53 +/- 0.01 RI, expanding up to 310 nm with a 1.35 +/- 0.01 RI at higher pH values, mostly due to the structural changes in the PAA.
5.
Exciting Surface Plasmon Resonances on Gold Thin Film-Coated Optical Fibers Through Nanoparticle Light Scattering
Mendes, JP
; dos Santos, PSS
; Dias, B
; Núñez Sánchez, S
; Pastoriza Santos, I
; Pérez Juste, J
; Pereira, CM
; Jorge, PAS
; de Almeida, JMMM
; Coelho, LCC
in ADVANCED OPTICAL MATERIALS, 2024, ISSN: 2195-1071, Volume: 12,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
Surface plasmon resonance (SPR) conventionally occurs at the interface of a thin metallic film and an external dielectric medium in fiber optics through core-guided light. However, this work introduces theoretical and experimental evidence suggesting that the SPR in optical fibers can also be induced through light scattering from Au nanoparticles (NPs) on the thin metallic film, defined as nanoparticle-induced SPR (NPI-SPR). This method adheres to phase-matching conditions between SPR dispersion curves and the wave vectors of scattered light from Au NPs. Experimentally, these conditions are met on an etched optical fiber, enabling direct interaction between light and immobilized Au NPs. Compared to SPR, NPI-SPR exhibits stronger field intensity in the external region and wavelength tuning capabilities (750 to 1250 nm) by varying Au NP diameters (20 to 90 nm). NPI-SPR demonstrates refractive index sensitivities of 4000 to 4416 nm per refractive index unit, nearly double those of typical SPR using the same optical fiber configuration sans Au NPs. Additionally, NPI-SPR fiber configuration has demonstrated its applicability for developing biosensors, achieving a remarkable limit of detection of 0.004 nm for thrombin protein evaluation, a twenty-fold enhancement compared to typical SPR. These findings underscore the intrinsic advantages of NPI-SPR for sensing. Surface plasmon resonance (SPR) typically occurs at the interface of a thin metallic film and a dielectric medium in fiber optics. This work presents evidence of nanoparticle-induced SPR (NPI-SPR) in optical fibers through light scattering from Au nanoparticles on the thin metallic film. NPI-SPR offers stronger field intensity, wavelength tuning, and enhanced refractive index sensitivities, making it advantageous for biosensing applications. image
6.
Ratiometric System based on an Ionic Liquid-modified Colorimetric Dye for Enhanced Carbon Dioxide Sensing
Lopes, X
; Coelho, LCC
; Jorge, PAS
; Mendes, JP
in 2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024, 2024, ISSN: 2994-9300, Volume: 526,
Proceedings Paper, Indexed in: crossref, scopus, wos
Abstract
Carbon dioxide (CO2) holds paramount significance in nature, serving as a vital component in Earth's ecosystems. Its evaluation has become increasingly important across various sectors, spanning from environmental conservation to industrial operations. Therefore, this study investigates the viability of utilizing a pH colorimetric dye as a CO2-sensitive material. The material's effectiveness relies on chemical modifications induced in the dye structure through the action of a phase transfer agent, which establishes a stable equilibrium with the dye, thereby promoting its receptivity to CO2 molecules. As the resulting physicochemical changes primarily exhibit colorimetric alterations, an optical system was developed to assess the performance of this material upon exposure to CO2. Employing a dual-wavelength method, the system also incorporates a ratiometric relationship between the two signals to provide the most precise information. The conducted experiments generated promising results when the dye was subjected to varying concentrations of CO2, ranging from 0% to 4%, in comparison to nitrogen (N-2). The application of the ratiometric method emerged as a crucial factor in this system, enabling its potential use in environments characterized by instability. Finally, the dye-sensitive characteristics experienced enhancement through the integration of an ionic liquid within the membrane matrix.
7.
From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing
dos Santos, PSS
; Mendes, JP
; Perez Juste, J
; Pastoriza Santos, I
; De Almeida, JMMM
; Coelho, LCC
in PHOTONICS RESEARCH, 2024, ISSN: 2327-9125, Volume: 12,
Article, Indexed in: crossref, scopus, wos
Abstract
Nanoparticle-based plasmonic optical fiber sensors can exhibit high sensing performance, in terms of refractive index sensitivities (RISs). However, a comprehensive understanding of the factors governing the RIS in this type of sensor remains limited, with existing reports often overlooking the presence of surface plasmon resonance (SPR) phenomena in nanoparticle (NP) assemblies and attributing high RIS to plasmonic coupling or waveguiding effects. Herein, using plasmonic optical fiber sensors based on spherical Au nanoparticles, we investigate the basis of their enhanced RIS, both experimentally and theoretically. The bulk behavior of assembled Au NPs on the optical fiber was investigated using an effective medium approximation (EMA), specifically the gradient effective medium approximation (GEMA). Our findings demonstrate that the Au-coated optical fibers can support the localized surface plasmon resonance (LSPR) as well as SPR in particular scenarios. Interestingly, we found that the nanoparticle sizes and surface coverage dictate which effect takes precedence in determining the RIS of the fiber. Experimental data, in line with numerical simulations, revealed that increasing the Au NP diameter from 20 to 90 nm (15% surface coverage) led to an RIS increase from 135 to 6998 nm/RIU due to a transition from LSPR to SPR behavior. Likewise, increasing the surface coverage of the fiber from 9% to 15% with 90 nm Au nanoparticles resulted in an increase in RIS from 1297 (LSPR) to 6998 nm/RIU (SPR). Hence, we ascribe the exceptional performance of these plasmonic optical fibers primary to SPR effects, as evidenced by the nonlinear RIS behavior. The outstanding RIS of these plasmonic optical fibers was further demonstrated in the detection of thrombin protein, achieving very low limits of detection. These findings support broader applications of high-performance NP-based plasmonic optical fiber sensors in areas such as biomedical diagnostics, environmental monitoring, and chemical analysis. (c) 2024 Chinese Laser Press
8.
Monitoring Reinforced Concrete Structures Using Iron Thin Film Coated Optical Fibre Sensors
Da Silva, M
; Carvalho, PM
; Mendes, P
; De Almeida, MMM
; Coelho, CC
in EPJ Web of Conferences, 2024, ISSN: 2101-6275, Volume: 305,
Proceedings Paper, Indexed in: crossref, scopus
Abstract
Structural health monitoring (SHM) of reinforced concrete structures (RCS) is crucial for mitigating the consequences of their deterioration. By identifying and addressing the issues early, SHM helps reduce environmental impact, safeguard lives, and enhance economic resilience. Rebar corrosion is a leading cause of early RCS decay and optical fibre sensors (OFS) have been employed for its monitoring. Reflection optrodes using optical fibres where the tip is coated with iron (Fe) thin films offer a robust, long-lasting and straightforward solution. This study investigates the tracking of spectral changes during the Fe thin film corrosion, which has been neglected in the literature, in favour of tracking reflection changes from thin film spalling. A multimode fibre tip, coated with a thin Fe layer embedded in concrete, allows spectral changes to be observed during corrosion. A 100 nm thick Fe film was deposited using radio frequency magnetron sputtering on polished fibre tips. Corrosion was induced by applying salted water drops and allowing the fibre tip to dry. Corrosion monitoring was successful for both air-exposed and cement-embedded tips, with results compared to reflection simulations of Fe, Fe2O3, and Fe2O3 thin films. This study supports monitoring at different wavelengths, enhancing robustness, cost-effectiveness and earlier detection. © The Authors.
9.
Spectral Analysis Methods for Improved Resolution and Sensitivity: Enhancing SPR and LSPR Optical Fiber Sensing
Dos Santos, PSS
; Mendes, JP
; Dias, B
; Perez-Juste, J
; De Almeida, JMMM
; Pastoriza-Santos, I
; Coelho, LCC
in SENSORS, 2023, ISSN: 1424-8220, Volume: 23,
Article, Indexed in: crossref, scopus, wos
Abstract
Biochemical-chemical sensing with plasmonic sensors is widely performed by tracking the responses of surface plasmonic resonance peaks to changes in the medium. Interestingly, consistent sensitivity and resolution improvements have been demonstrated for gold nanoparticles by analyzing other spectral features, such as spectral inflection points or peak curvatures. Nevertheless, such studies were only conducted on planar platforms and were restricted to gold nanoparticles. In this work, such methodologies are explored and expanded to plasmonic optical fibers. Thus, we study-experimentally and theoretically-the optical responses of optical fiber-doped gold or silver nanospheres and optical fibers coated with continuous gold or silver thin films. Both experimental and numerical results are analyzed with differentiation methods, using total variation regularization to effectively minimize noise amplification propagation. Consistent resolution improvements of up to 2.2x for both types of plasmonic fibers are found, demonstrating that deploying such analysis with any plasmonic optical fiber sensors can lead to sensing resolution improvements.
10.
Transmissive glucose concentration plasmonic Au sensor based on unclad optical fiber
Cunha, C
; Assuncao, AS
; Monteiro, CS
; Leitao, C
; Mendes, JP
; Silva, S
; Frazao, O
; Novais, S
in 2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, ISSN: 2377-8563,
Proceedings Paper, Indexed in: crossref, scopus, wos
Abstract
Using surface resonance (SPR) as a sensitivity enhancer, this work describes the development of a transmissive multimode optical fiber sensor with a gold (Au) thin film that measures glucose concentration. The fiber's cladding was initially removed, and an Au layer was then sputtered onto its surface to simultaneously excite SPR and reflect light, making the SPR sensor extremely sensitive to changes in the environment's refractive index. A range of glucose concentrations, from 0.0001 to 0.5000 g/ml, were tested on the sensor. A maximum sensitivity of 161.302 nm/(g/mL) was attained for the lowest glucose concentration, while the highest concentration yielded a sensitivity of 312.000 nm/(g/mL). The proposed sensor's compact size, high sensitivity, good stability and practicality make it a promising candidate for a range of applications, including detecting diabetes.