Showing: 10 from total: 28 publications
1. Exploiting the potential of rivastigmine-melatonin derivatives as multitarget metal-modulating drugs for neurodegenerative diseases
Dias, I ; Bon, L ; Banas, A ; Chavarria, D ; Guerreiro-Oliveira, C ; Cardoso, SM ; Sanna, D ; Garribba, E ; Chaves, S ; Santos, MA
in JOURNAL OF INORGANIC BIOCHEMISTRY, 2025, ISSN: 0162-0134,  Volume: 262, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract The multifaceted nature of the neurodegenerative diseases, as Alzheimer's disease (AD) and Parkinson's disease (PD) with several interconnected etiologies, and the absence of effective drugs, led herein to the development and study of a series of multi-target directed ligands (MTDLs). The developed RIV-IND hybrids, derived from the conjugation of an approved anti-AD drug, rivastigmine (RIV), with melatonin analogues, namely indole (IND) derivatives, revealed multifunctional properties, by associating the cholinesterase inhibition of the RIV drug with antioxidant activity, biometal (Cu(II), Zn(II), Fe(III)) chelation properties, inhibition of amyloid-/3 (A/3) aggregation (self- and Cu-induced) and of monoamine oxidases (MAOs), as well as neuroprotection capacity in cell models of AD and PD. In particular, two hybrids with hydroxyl-substituted indoles ( 5a2 and 5a3) ) could be promising multifunctional compounds that inspire further development of novel anti-neurodegenerative drugs.

2. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now?
Sequeira, L ; Benfeito, S ; Fernandes, C ; Lima, I ; Peixoto, J ; Alves, C ; Machado, CS ; Gaspar, A ; Borges, F ; Chavarria, D
in PHARMACEUTICS, 2024, ISSN: 1999-4923,  Volume: 16, 
Review,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.

3. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction
Carradori, S ; Chavarria, D ; Provensi, G ; Leri, M ; Bucciantini, M ; Carradori, S ; Bonardi, A ; Gratteri, P ; Nocentini, A ; Supuran, CT
in JOURNAL OF MEDICINAL CHEMISTRY, 2024, ISSN: 0022-2623,  Volume: 67, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-beta-peptide (A beta)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (K(I)s in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented A beta-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.

4. Mechanistic Insights into the Neurotoxicity of 2,5-Dimethoxyphenethylamines (2C) and Corresponding N-(2-methoxybenzyl)phenethylamine (NBOMe) Drugs
Gil-Martins, E ; Martins, D ; Borer, A ; Barbosa, DJ ; Fernandes, C ; Chavarria, D ; Remiao, F ; Silva, R
in JOURNAL OF XENOBIOTICS, 2024, ISSN: 2039-4705,  Volume: 14, 
Article,  Indexed in: crossref, scopus, wos 
Abstract Substituted phenethylamines including 2C (2,5-dimethoxyphenethylamines) and NBOMe (N-(2-methoxybenzyl)phenethylamines) drugs are potent psychoactive substances with little to no knowledge available on their toxicity. In the present in vitro study, we explored the mechanisms underlying the neurotoxicity of six substituted phenethylamines: 2C-T-2, 2C-T-4, 2C-T-7 and their corresponding NBOMes. These drugs were synthesized and chemically characterized, and their cytotoxicity (0-1000 mu M) was evaluated in differentiated SH-SY5Y cells and primary rat cortical cultures, by the NR uptake and MTT reduction assays. In differentiated SH-SY5Y cells, mitochondrial membrane potential, intracellular ATP and calcium levels, reactive oxygen species production, and intracellular total glutathione levels were also evaluated. All the tested drugs exhibited concentration-dependent cytotoxic effects towards differentiated SH-SY5Y cells and primary rat cortical cultures. The NBOMe drugs presented higher cytotoxicity than their counterparts, which correlates with the drug's lipophilicity. These cytotoxic effects were associated with mitochondrial dysfunction, evident through mitochondrial membrane depolarization and lowered intracellular ATP levels. Intracellular calcium imbalance was observed for 2C-T-7 and 25T7-NBOMe, implying a disrupted calcium regulation. Although reactive species levels remained unchanged, a reduction in intracellular total GSH content was observed. Overall, these findings contribute to a deeper understanding of these drugs, shedding light on the mechanisms underpinning their neurotoxicity.

5. Targeting Lewy body dementia with neflamapimod-rasagiline hybrids
Albertini, C ; Petralla, S ; Massenzio, F ; Monti, B ; Rizzardi, N ; Bergamini, C ; Uliassi, E ; Chavarria, D ; Fricker, G ; Goettert, M ; Kronenberger, T ; Gehringer, M ; Laufer, S ; Bolognesi, ML
in ARCHIV DER PHARMAZIE, 2024, ISSN: 0365-6233,  Volume: 357, 
Article in Press,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Lewy body dementia (LBD) represents the second most common neurodegenerative dementia but is a quite underexplored therapeutic area. Nepflamapimod (1) is a brain-penetrant selective inhibitor of the alpha isoform of the mitogen-activated serine/threonine protein kinase (MAPK) p38 alpha, recently repurposed for LBD due to its remarkable antineuroinflammatory properties. Neuroprotective propargylamines are another class of molecules with a therapeutical potential against LBD. Herein, we sought to combine the antineuroinflammatory core of 1 and the neuroprotective propargylamine moiety into a single molecule. Particularly, we inserted a propargylamine moiety in position 4 of the 2,6-dichlorophenyl ring of 1, generating neflamapimod-propargylamine hybrids 3 and 4. These hybrids were evaluated using several cell models, aiming to recapitulate the complexity of LBD pathology through different molecular mechanisms. The N-methyl-N-propargyl derivative 4 showed a nanomolar p38 alpha-MAPK inhibitory activity (IC50 = 98.7 nM), which is only 2.6-fold lower compared to that of the parent compound 1, while displaying no hepato- and neurotoxicity up to 25 mu M concentration. It also retained a similar immunomodulatory profile against the N9 microglial cell line. Gratifyingly, at 5 mu M concentration, 4 demonstrated a neuroprotective effect against dexamethasone-induced reactive oxygen species production in neuronal cells that was higher than that of 1.

6. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities
Amorim, R ; Soares, P ; Chavarria, D ; Benfeito, S ; Cagide, F ; Teixeira, J ; Oliveira, J ; Borges, F
in EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2024, ISSN: 0223-5234,  Volume: 277, 
Review,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.

7. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities
Soares, P ; Silva, C ; Chavarria, D ; Silva, FSG ; Oliveira, PJ ; Borges, F
in AGEING RESEARCH REVIEWS, 2023, ISSN: 1568-1637,  Volume: 83, 
Review,  Indexed in: crossref, scopus, wos 
Abstract Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major reg-ulators of hypoxia and inflammation - HIF and NF-kappa B - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi -target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.

8. Molecular mechanisms of ferroptosis and their involvement in brain diseases
Costa, I ; Barbosa, DJ ; Benfeito, S ; Silva, V ; Chavarria, D ; Borges, F ; Remiao, F ; Silva, R
in PHARMACOLOGY & THERAPEUTICS, 2023, ISSN: 0163-7258,  Volume: 244, 
Review,  Indexed in: crossref, scopus, wos 
Abstract Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxy-gen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxida-tion and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways.Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, pre-vent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting gluta-thione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, alpha-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors.Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other stud-ies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors.Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.(c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

9. Unraveling the In Vitro Toxicity Profile of Psychedelic 2C Phenethylamines and Their N-Benzylphenethylamine (NBOMe) Analogues
Martins, D ; Gil-Martins, E ; Cagide, F ; da Fonseca, C ; Benfeito, S ; Fernandes, C ; Chavarria, D ; Remiao, F ; Silva, R ; Borges, F
in PHARMACEUTICALS, 2023, ISSN: 1424-8247,  Volume: 16, 
Article,  Indexed in: crossref, scopus, unpaywall, wos 
Abstract Mescaline derivative (2C phenethylamines) drugs have been modified by the introduction of a N-2-methoxybenzyl group to originate a new series of compounds with recognized and potent psychedelic effects, the NBOMe-drugs. Although they are prevalent in unregulated drug markets, their toxicity profile is still poorly understood, despite several reports highlighting cases of acute intoxication, with brain and liver toxicity. Thus, in this study, mescaline, 2C-N (insertion of a nitro in the para position of the 2C phenethylamines aromatic ring) and 2C-B (insertion of a bromide in the para position of the 2C phenethylamines aromatic ring) and their corresponding NBOMe counterparts, mescaline-NBOMe, 25N-NBOMe and 25B-NBOMe, were synthetized and the in vitro neuro- and hepatocytotoxicity evaluated in differentiated SH-SY5Y and HepG2 cell lines, respectively. Cytotoxicity, oxidative stress, metabolic and energetic studies were performed to evaluate the main pathways involved in their toxicity. Our results demonstrated that the presence of the N-2-methoxybenzyl group significantly increased the in vitro cytotoxicity of 2C phenethylamines drugs in both cell lines, with the NBOMe drugs presenting lower EC50 values when compared to their counterparts. Consistently, our data showed a correlation between the drug's lipophilicity and the EC50 values, except for 2C-B. The 2C-B presented higher cytotoxic effects in both cell lines than mescaline-NBOMe, a result that can be explained by its higher passive permeability. All the NBOMe derivatives were able to cross the blood-brain barrier. Considering metabolic studies, the cytotoxicity of these drugs was shown to be influenced by inhibition of cytochrome P450 (CYP), which suggests a potential role of this enzyme complex, especially CYP3A4 and CYP2D6 isoenzymes in SH-SY5Y cells, in their detoxification or bioactivation. Furthermore, in differentiated SH-SY5Y cells, the drugs were able to induce mitochondrial membrane depolarization, and to disrupt GSH and ATP intracellular levels, these effects being concentration dependent and more pronounced for the NBOMe derivatives. No ROS overproduction was detected for any of the drugs in the tested experimental conditions. A correlation between a drug's lipophilicity and the EC50 values in both cell lines, except for 2C-B, was also obtained. In summary, the introduction of a NBOMe moiety to the parent drugs significantly increases their lipophilicity, brain permeability and cytotoxic effects, with GSH and ATP homeostasis disruption. The inhibition of CYP3A4 and CYP2D6 emphasized that CYP-mediated metabolism impacts the toxicity of these drugs.

10. Rivastigmine-Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases
Vicente-Zurdo, D ; Brunetti, L ; Piemontese, L ; Guedes, B ; Cardoso, SM ; Chavarria, D ; Borges, F ; Madrid, Y ; Chaves, S ; Santos, MA
in INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, ISSN: 1661-6596,  Volume: 24, 
Article,  Indexed in: crossref, scopus, wos 
Abstract With the goal of combating the multi-faceted Alzheimer's disease (AD), a series of Rivastigmine-Benzimidazole (RIV-BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-beta (A beta) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson's disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the A beta-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxic metabolite of a Parkinsonian-inducing agent.