Showing: 10 from total: 2524 publications
331.
Integrative Profiling of Amyotrophic Lateral Sclerosis Lymphoblasts Identifies Unique Metabolic and Mitochondrial Disease Fingerprints
Cunha Oliveira, T
; Carvalho, M
; Sardao, V
; Ferreiro, E
; Mena, D
; Pereira, FB
; Oliveira, PJ
; Silva, FSG
in MOLECULAR NEUROBIOLOGY, 2022, ISSN: 0893-7648, Volume: 59,
Article, Indexed in: crossref, scopus, wos
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with a rapid progression and no effective treatment. Metabolic and mitochondrial alterations in peripheral tissues of ALS patients may present diagnostic and therapeutic interest. We aimed to identify mitochondrial fingerprints in lymphoblast from ALS patients harboring SOD1 mutations (mutSOD1) or with unidentified mutations (undSOD1), compared with age-/sex-matched controls. Three groups of lymphoblasts, from mutSOD1 or undSOD1 ALS patients and age-/sex-matched controls, were obtained from Coriell Biobank and divided into 3 age-/sex-matched cohorts. Mitochondria-associated metabolic pathways were analyzed using Seahorse MitoStress and ATP Rate assays, complemented with metabolic phenotype microarrays, metabolite levels, gene expression, and protein expression and activity. Pooled (all cohorts) and paired (intra-cohort) analyses were performed by using bioinformatic tools, and the features with higher information gain values were selected and used for principal component analysis and Naive Bayes classification. Considering the group as a target, the features that contributed to better segregation of control, undSOD1, and mutSOD1 were found to be the protein levels of Tfam and glycolytic ATP production rate. Metabolic phenotypic profiles in lymphoblasts from ALS patients with mutSOD1 and undSOD1 revealed unique age-dependent different substrate oxidation profiles. For most parameters, different patterns of variation in experimental endpoints in lymphoblasts were found between cohorts, which may be due to the age or sex of the donor. In the present work, we investigated several metabolic and mitochondrial hallmarks in lymphoblasts from each donor, and although a high heterogeneity of results was found, we identified specific metabolic and mitochondrial fingerprints, especially protein levels of Tfam and glycolytic ATP production rate, that may have a diagnostic and therapeutic interest.
332.
Ammonium-, phosphonium- and sulfonium-based 2-cyanopyrrolidine ionic liquids for carbon dioxide fixation
Chaban, VV
; Andreeva, NA
; Voroshylova, IV
in PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, ISSN: 1463-9076, Volume: 24,
Article, Indexed in: crossref, scopus, wos
Abstract
The development of carbon dioxide (CO2) scavengers is an acute problem nowadays because of the global warming problem. Many groups around the globe intensively develop new greenhouse gas scavengers. Room-temperature ionic liquids (RTILs) are seen as a proper starting point to synthesize more environmentally friendly and high-performance sorbents. Aprotic heterocyclic anions (AHA) represent excellent agents for carbon capture and storage technologies. In the present work, we investigate RTILs in which both the weakly coordinating cation and AHA bind CO2. The ammonium-, phosphonium-, and sulfonium-based 2-cyanopyrrolidines were investigated using the state-of-the-art method to describe the thermochemistry of the CO2 fixation reactions. The infrared spectra and electronic and structural properties were simulated at the hybrid density functional level of theory to characterize the reactants and products of the chemisorption reactions. We conclude that the proposed CO2 capturing mechanism is thermodynamically allowed and discuss the difference between different families of RTILs. Quite unusually, the intramolecular electrostatic attraction plays an essential role in stabilizing the zwitterionic products of the CO2 chemisorption. The difference in chemisorption performance between the families of RTILs is linked to sterical hindrances and nucleophilicities of the alpha- and beta-carbon atoms of the aprotic cations. Our results rationalize previous experimental CO2 sorption measurements (Brennecke et al., 2021).
333.
Predicting the Surface Tension of Deep Eutectic Solvents: A Step Forward in the Use of Greener Solvents
Halder, AK
; Haghbakhsh, R
; Voroshylova, IV
; Duarte, ARC
; Cordeiro, MNDS
in MOLECULES, 2022, ISSN: 1420-3049, Volume: 27,
Article, Indexed in: crossref, scopus, wos
Abstract
Deep eutectic solvents (DES) are an important class of green solvents that have been developed as an alternative to toxic solvents. However, the large-scale industrial application of DESs requires fine-tuning their physicochemical properties. Among others, surface tension is one of such properties that have to be considered while designing novel DESs. In this work, we present the results of a detailed evaluation of Quantitative Structure-Property Relationships (QSPR) modeling efforts designed to predict the surface tension of DESs, following the Organization for Economic Co-operation and Development (OECD) guidelines. The data set used comprises a large number of structurally diverse binary DESs and the models were built systematically through rigorous validation methods, including 'mixtures-out'- and 'compounds-out'-based data splitting. The most predictive individual QSPR model found is shown to be statistically robust, besides providing valuable information about the structural and physicochemical features responsible for the surface tension of DESs. Furthermore, the intelligent consensus prediction strategy applied to multiple predictive models led to consensus models with similar statistical robustness to the individual QSPR model. The benefits of the present work stand out also from its reproducibility since it relies on fully specified computational procedures and on publicly available tools. Finally, our results not only guide the future design and screening of novel DESs with a desirable surface tension but also lays out strategies for efficiently setting up silico-based models for binary mixtures.
334.
RIPK3 dampens mitochondrial bioenergetics and lipid droplet dynamics in metabolic liver disease
Afonso, MB
; Islam, T
; Magusto, J
; Amorim, R
; Lenoir, V
; Simoes, RF
; Teixeira, J
; Silva, LC
; Wendum, D
; Jeru, I
; Vigouroux, C
; Castro, RE
; Oliveira, PJ
; Prip-Buus, C
; Ratziu, V
; Gautheron, J
; Rodrigues, CMP
in HEPATOLOGY, 2022, ISSN: 0270-9139, Volume: 77,
Article in Press, Indexed in: crossref, scopus, wos
Abstract
Background and Aims Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD. Approach and Results Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3(-/-) mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3-null fat-loaded immortalized hepatocytes. The association between hepatic perilipin (PLIN) 1 and 5, RIPK3, and disease severity was also addressed in a cohort of patients with NAFLD and in PLIN1-associated familial partial lipodystrophy. Ripk3 deficiency rescued impairment in mitochondrial biogenesis, bioenergetics, and function in CDAA diet-fed mice and fat-loaded hepatocytes. Ripk3 deficiency was accompanied by a strong upregulation of antioxidant systems, leading to diminished oxidative stress upon fat loading both in vivo and in vitro. Strikingly, Ripk3(-/-) hepatocytes displayed smaller size LD in higher numbers than WT cells after incubation with free fatty acids. Ripk3 deficiency upregulated adipocyte and hepatic levels of LD-associated proteins PLIN1 and PLIN5. PLIN1 upregulation controlled LD structure and diminished mitochondrial stress upon free fatty acid overload in Ripk3(-/-) hepatocytes and was associated with diminished human NAFLD severity. Conversely, a pathogenic PLIN1 frameshift variant was associated with NAFLD and fibrosis, as well as with increased hepatic RIPK3 levels in familial partial lipodystrophy. Conclusions Ripk3 deficiency restores mitochondria bioenergetics and impacts LD dynamics. RIPK3 inhibition is promising in ameliorating NAFLD.
335.
Cytoskeleton alterations in non-alcoholic fatty liver disease
Pessoa, J
; Teixeira, J
in Metabolism, 2022, ISSN: 0026-0495, Volume: 128,
Article, Indexed in: crossref
336.
Graphene-Modified Glassy Carbon Electrodes: Correlations between Electrochemical Performance, Film Morphology and Composition
Fernandes, PMV
; Pereira, CM
; Campina, JM
; Silva, AF
in INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, ISSN: 1452-3981, Volume: 17,
Article, Indexed in: crossref, scopus, wos
Abstract
Graphene and its derivatives are generally portrayed as electron transfer enhancers that effectively boost the electrochemical response of classic electrodes for applications in renewable energy, electronics, or analysis (amongst others). However, a number of fundamental studies have challenged this view. In certain reports, not only could no beneficial effect be demonstrated, but the opposite was concluded. If we want to advance towards a more rational design of high-performance electrode devices, these discrepancies need to be cleared and the fundamental aspects of electron transfer reactions through graphene-electrodes further understood. The present study contributes to this cause by exploring the relationships between the structure and morphological appearance of graphene films and their electrochemical performance in fundamental proof-of-concept experiments. The results unveil that important differences in the structure and morphology of the films (which are tightly related to the composition and load of graphene materials) govern the electrochemical response of the modified electrodes. Thereby, a possible explanation for the apparently contradictory conclusions reported in the literature is provided.
337.
Improved Metal Cation Optosensing Membranes through the Incorporation of Sulphated Polysaccharides
Santos, PRM
; Johny, A
; Silva, CQ
; Azenha, MA
; Vazquez, JA
; Valcarcel, J
; Pereira, CM
; Silva, AF
in MOLECULES, 2022, Volume: 27,
Article, Indexed in: crossref, wos
Abstract
Optosensing chitosan-based membranes have been applied for the detection of heavy metals, especially in drinking water. The novelty of this study is based on the use of sulphated polysaccharides, in such optosensing membranes, aiming at an improved analytical performance. The sulphated polysaccharides, such as ulvan, fucoidan and chondroitin sulfate, were extracted from by-products and wastes of marine-related activities. The membranes were developed for the analysis of aluminum. The variation in the visible absorbance of the sensor membranes after the contact between the chromophore and the aluminum cation was studied. The membranes containing sulphated polysaccharides showed improved signals when compared to the chitosan-only membrane. As for the detection limits for the membranes containing ulvan, fucoidan and chondroitin sulfate, 0.17 mg L-1, 0.21 mg L-1 and 0.36 mg L-1 were obtained, respectively. The values were much lower than that obtained for the chitosan-only membrane, 0.52 mg L-1, which shows the improvement obtained from the sulphated polysaccharides. The results were obtained with the presence of CTAB in analysis solution, which forms a ternary complex with the aluminum cation and the chromophore. This resulted in an hyperchromic and batochromic shift in the absorption band. When in the presence of this surfactant, the membranes showed lower detection limits and higher selectivity.
338.
A simpler and greener alternative route for anchoring carbohydrates with structural integrity on silica and glass supports
Kadhirvel, P
; Azenha, M
; Ivanova, G
; Pereira, C
; Silva, AF
in JOURNAL OF CARBOHYDRATE CHEMISTRY, 2022, ISSN: 0732-8303, Volume: 41,
Article, Indexed in: crossref, scopus, wos
Abstract
A novel, straightforward, and environmentally friendly direct coupling procedure to immobilize carbohydrates on solid supports is presented. A characterization study showed that all amino groups on solid supports participated in the linkage with a carbohydrate unit, implicating that the surface load can be easily adjusted by tuning the amination coverage of the surface. Most importantly, the integrity of the cyclic conformation of the linked sugar unit was demonstrated, a feature that is critical for most of the possible applications of carbohydrate-functionalized surfaces. Furthermore, carbohydrate-immobilized submicron particles synthesized by the direct coupling method, on which lectin profiling experiments were conducted, validated the successfulness of our simplistic approach.
339.
Crystallization of hollow TiO2 into anatase at mild conditions, for improved surface recognition in selective photocatalysis
Ferreira, VRA
; Azenha, MA
; Pereira, CM
; Silva, AF
in APPLIED CATALYSIS A-GENERAL, 2022, ISSN: 0926-860X, Volume: 648,
Article, Indexed in: crossref, scopus, wos
Abstract
The objective of this work was the exploration of low calcination temperature ranges (< 350 degrees C) to obtain molecularly imprinted microspheres (MIM) with a high crystallinity as anatase, in cooperation of an acidic pretreatment aiming at the preservation of the hollow shape and also of the selective binding sites. It was confirmed the possibility of obtaining bilirubin-imprinted crystalline TiO2 microspheres (highly crystalline anatase, as confirmed by XRD) exhibiting higher photocatalytic efficiency associated especially with the hollow shape and calcination at lower temperatures (200 degrees C or 250 degrees C). It was with the calcination temperature of 250 degrees C that the highest photocatalytic efficiency was obtained, under UV irradiation, associated with the highest adsorption selectivity (alpha(K) = 19) and degradation selectivity (alpha(k) = 2.7) observed for the degradation of the template against a closely related analogue compound.
340.
Molecularly Imprinted Methyl-Modified Hollow TiO2 Microspheres
Ferreira, VRA
; Azenha, MA
; Pereira, CM
; Silva, AF
in MOLECULES, 2022, ISSN: 1420-3049, Volume: 27,
Article, Indexed in: crossref, scopus, unpaywall, wos
Abstract
The possibility of generating organically modified hollow TiO2 microspheres via a simple sol-gel synthesis was demonstrated for the first time in this work. A mixture of titania precursors, including an organically modified precursor, was used to obtain methyl-modified hollow TiO2 microspheres selective for bilirubin by the molecular imprinting technique (Methyl-HTM-MIM). Methyl-HTM-MIM were prepared by a sol-gel method using titanium (IV) isopropoxide (TTIP), and methyltitanium triisopropoxide (MTTIP) as precursors. Two ratios of titania precursors were tested (1/6 and 1/30 mol(MTTIP)/mol(TTIP)). With the characterization results obtained by the SEM and ATR-FTIR techniques, it was possible to establish that only the 1/30 mol(MTTIP)/mol(TTIP) ratio allowed for the preparation of hollow spheres with a reasonably homogeneous methylated-TiO2 shell. It was possible to obtain a certain degree of organization of the hybrid network, which increased with calcination temperatures. By adjusting isothermal adsorption models, imprinting parameters were determined, indicating that the new methylated microspheres presented greater selectivity for bilirubin than the totally inorganic hollow TiO2 microspheres. The effectiveness of the molecular imprinting technique was proven for the first time in an organically modified titania material, with imprinting factor values greater than 1.4, corresponding to a significant increase in the maximum adsorption capacity of the template represented by the molecularly imprinted microspheres. In summary, the results obtained with the new methyl-HTM-MIM open the possibility of exploring the application of these microspheres for selective sorption (separation or sensing, for example) or perhaps even for selective photocatalysis, particularly for the degradation of organic compounds.