Degree: Doctor

Projects
This CIQUP member does not yet have any projects linked with him.
Publications
Total 5 publications.
1. Electrochemical immunosensor for detection of CA 15-3 biomarker in point-of-care, Rebelo, TSCR Ribeiro, JA Sales, MGF; Pereira, CM in SENSING AND BIO-SENSING RESEARCH, 2021, ISSN: 2214-1804,  Volume: 33, 
Article,  Indexed in: crossref, wos  DOI: 10.1016/j.sbsr.2021.100445 P-00V-CE0
Abstract This work reports the development of a simple and rapid electrochemical immunosensor for the determination of breast cancer biomarker Cancer Antigen 15-3 (CA 15-3). Disposable and cost-effective chips, consisting of gold screen-printed electrodes (AuSPEs), were used to develop the portable electrochemical devices for monitoring the biomarker in point-of-care (PoC), under clinical context. The biosensor preparation consisted of two simple steps. First, a self-assembled monolayer (SAM) of mercaptosuccinic acid (MSA) was formed at the AuSPE surface. Then, the CA 15-3 antibody was covalently bound to the carboxylic groups standing at the electrode surface using EDC/NHS chemistry. The performance of the developed immunosensor was evaluated by assessing the sensor sensitivity, linear response interval, selectivity and detection limit (LOD). The developed immunosensor provided a wide linear concentration range (from 1.0 to 1000 U mL(-1)) and low detection levels were achieved (LOD of 0.95 U mL(-1)), enabling the sensitive detection of the cancer biomarker at clinically relevant levels, using square wave voltammetry (SWV) as electroanalytical technique. Moreover, selectivity studies performed against other cancer biomarkers (CA 125 and CA 19-9) revealed that the antibody has high selectivity for CA 15-3 antigen. The immunosensor was applied to the quantification of CA 15-3 in artificial serum samples with satisfactory results.

2. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum, Rebelo, TSCR Costa, R Brandao, ATSC Silva, AF Sales, MGE; Pereira, CM in ANALYTICA CHIMICA ACTA, 2019, ISSN: 0003-2670,  Volume: 1082, 
Article,  Indexed in: crossref, scopus, wos  DOI: 10.1016/j.aca.2019.07.050 P-00R-0BR
Abstract Considering the high incidence level and mortality rate of ovarian cancer, particularly among the European female population, the carbohydrate antigen 125 (CA-125) was selected as the protein target for this study for the development of a MIP-based biosensor. This work presents the development of molecular imprinting polymers (MIPs) on gold electrode surface for CA-125 biomarker recognition. The preparation of the CA-125 imprinting was obtained by electropolymerization of pyrrole (Py) monomer in a gold electrode using cyclic voltammetry (CV) in order to obtain highly selective materials with great molecular recognition capability. The quantification of CA-125 biomarker was made through the comparison of two methods: electrochemical (square wave voltammetry -SWV) and optical transduction (surface plasmon resonance -SPR). SWV has been widely used in biological molecules analysis since it is a fast and sensitive technique. In turn, SPR is a non-destructive optical technique that provides high-quality analytical data of CA-125 biomarker interactions with MIP. Several analytical parameters, such as sensitivity, linear response interval, and detection limit were determined to proceed to the performance evaluation of the electrochemical and optical transduction used in the development of the CA-125 biosensor. The biosensor based in the electrochemical transduction was the one that presented the best analytical parameters, yielding a good selectivity and a detection limit (LOD) of 0.01 U/mL, providing a linear concentration range between 0.01 and 500 U/mL. This electrochemical biosensor was selected for the study and it was successfully applied in the CA-125 analysis in artificial serum samples with recovery rates ranging from 91 to 105% with an average relative error of 5.8%.

3. Protein imprinted materials designed with charged binding sites on screen-printed electrode for microseminoprotein-beta determination in biological samples, Rebelo, TSCR Pereira, CM Sales, MGF; Noronha, JP; Silva, F in SENSORS AND ACTUATORS B-CHEMICAL, 2016, ISSN: 0925-4005,  Volume: 223, 
Article,  Indexed in: crossref, scopus, wos  DOI: 10.1016/j.snb.2015.09.133 P-00G-SCJ
Abstract In the past few years a large effort is being made aiming at the development of fast and reliable tests for cancer biomarkers. Protein imprinted sensors can be a fast and reliable strategy to develop tailor made sensors for a large number of relevant molecules. This work aims to produce, optimize and use in biological samples a biosensor for microseminoproteinbeta (MSMB). Caffeic acid (CAF) electropolimerization was performed in the presence of microseminoprotein-beta (MSMB) creating target protein specific cavities on the surface of a screen-printed carbon. Dopamine was introduced as charged monomer labelling the binding site and was allowed to self-organize around the protein. The subsequent electropolimerization was made by applying a constant potential of +2.0 V, for 30s, on a carbon screen-printed electrode, immersed in a solution of protein and CAF prepared in phosphate buffer. The sensor with charged monomers showed a more sensitive response, with an average slope of -7.59 mu A/decade, linear concentration range of 0.5-100 ng/mL and a detection limit of 0.12 ng/mL. The corresponding non-imprinted sensor displayed an inconsistent response over the range of the calibration curve. The biosensor was successfully applied to the analysis of MSMB in serum and urine samples.

4. Protein Imprinted Material electrochemical sensor for determination of Annexin A3 in biological samples, Rebelo, TSCR Pereira, CM Sales, MGF; Noronha, JP; Silva, F in ELECTROCHIMICA ACTA, 2016, ISSN: 0013-4686,  Volume: 190, 
Article,  Indexed in: crossref, scopus, wos  DOI: 10.1016/j.electacta.2015.12.214 P-00K-3GT
Abstract The development of fast and reliable methods for protein determination are of great relevance to a diversity of areas from industry to diagnostics. Molecular Imprinted Materials (MIM) has proved to be an interesting methodology for protein analysis however further studies of the effect of the experimental parameters and starting materials in the performance of the MIM are still required. Caffeic acid (CAF) is employed for the first time as a monomer to tailor a synthetic receptor for a protein target. This was done by bulk-electropolymerization, applying a constant potential of +2.0 V, for 30 s, on a carbon screen printed electrode, immersed in a solution of protein and CAF prepared in phosphate buffer. Annexin A3 (ANXA3) was selected as protein target due to the fact that this is an emerging biomarker in prostate cancer. The assembly of the protein imprinted material (PIM) was followed by Electrochemical Impedance Spectroscopy (EIS) and Raman Spectroscopy. A non-imprinted material (NIM) was prepared in parallel as control. Square wave voltammetry (SWV) was used to monitor the electrochemical signal of the [Fe(CN)(6)](3-)/[Fe(CN)(6)](4-) redox for the quantification of ANXA3. The optimized PIM-based device showed average detection limits (LOD) of 0.095 ng/mL, a linear behavior against log (concentration) between 0.10, and 200 ng/mL and good selectivity. The NIM-based device showed random behavior against protein concentration. Finally, the PIM-sensor was successfully applied to the analysis of ANXA3 in spiked urine samples.

5. Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples, Rebelo, TSCR Pereira, CM Sales, MGF; Noronha, JP; Costa Rodrigues, J; Silva, F Fernandes, MH in ANALYTICA CHIMICA ACTA, 2014, ISSN: 0003-2670,  Volume: 850, 
Article,  Indexed in: crossref, scopus, wos  DOI: 10.1016/j.aca.2014.08.005 P-009-YDT
Abstract As the prostate cancer (PCa) progresses, sarcosine levels increase both in tumor cells and urine samples, suggesting that this metabolite measurements can help in the creation of non-invasive diagnostic methods for this disease. In this work, a biosensor device was developed for the quantification of sarcosine via electrochemical detection of H2O2 (at 0.6 V) generated from the catalyzed oxidation of sarcosine. The detection was carried out after the modification of carbon screen printed electrodes (SPEs) by immobilization of sarcosine oxidase (SOX) on the electrode surface. The strategies used herein included the activation of the carbon films by an electrochemical step and the formation of an NHS/EDAC layer to bond the enzyme to the electrode, the use of metallic or semiconductor nanoparticles layer previously or during the enzyme immobilization. In order to improve the sensor stability and selectivity a polymeric layer with extra enzyme content was further added. The proposed methodology for the detection of sarcosine allowed obtaining a limit of detection (LOD) of 16 nM, using a linear concentration range between 10 and 100 nM. The biosensor was successfully applied to the analysis of sarcosine in urine samples.